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ABSTRACT 

Onset detection is a challenging problem in automatic 
singing transcription.  In this paper, we address singing 
onset detection with three main contributions. First, we 
outline the nature of a singing voice and present a new 
singing onset detection approach based on supervised 
machine learning.  In this approach, two Gaussian 
Mixture Models (GMMs) are used to classify audio 
features of onset frames and non-onset frames.  Second, 
existing audio features are thoroughly evaluated for this 
approach to singing onset detection. Third, feature-level 
and decision-level fusion are employed to fuse different 
features for a higher level of performance. Evaluated on a 
recorded singing database, the proposed approach 
outperforms state-of-the-art onset detection algorithms 
significantly. 

1. INTRODUCTION 

Accurate monophonic singing voice transcription depends 
heavily on singing onset detection.  Current onset 
detection algorithms applied on monophonic singing 
voice produced poor results [5][8].  In MIREX2007, the 
best result for onset detection of solo singing voice only 
managed an F-measure of 51.0% [2]. The singing voice is 
a pitched non-percussive (PNP) instrument [17], which is 
still a challenging category of instruments for onset 
detection.  The case is further complicated by the nature 
of the singing voice, which is inherently inconsistent and 
prone to pitching and timing dynamics. 

Current onset detection methods for PNP instruments, 
such as methods by spectral difference [7][10], phase 
deviation [6], pitch shift [9], and sub-band energy change 
[11][12] are targeted at detecting spectral changes based 
on certain rules.  It has been observed on a spectrogram 
that in general, a musical note onset occurs at locations 
where there is a visible change in the spectrum, and within 
the duration of the note, the spectrum is relatively stable.  
A violin signal is shown as an example in Fig.1a. 

However, for the case of singing voice, this 
observation may not always hold (Fig.1b).  Unlike most 
other instruments, where there is usually a high level of 
timbre consistency in the duration of a note, the singing 

voice is capable of producing much more variations of 
formant structures (for articulation); sometimes the 
formant structure may even change within the duration of 
a single note.  Pitch irregularities, pitch modulations, and 
inadvertent noise also upset stability of the spectrum. 

  

 
Figure 1: Comparison between spectrograms of violin 
and singing signal.  Onsets are marked by red circles 
 
Onset detection in the singing voice is much more 

complicated than in most other instruments.  An onset 
detector that relies explicitly on a rule-based approach is 
bound to fail to capture the nuances of the singing onset.  
To address the difficulties in singing onset detection, we 
present a new onset detector based on supervised machine 
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learning, in order to capture the intricacies of singing note 
onsets, illustrated in Figure 2. 

 
Figure 2: System diagram of the proposed system 

 
Two GMMs are used to profile the distribution of 

audio features of onset frames and non-onset frames, 
respectively.  We thoroughly evaluate existing audio 
features for their effectiveness in distinguishing onset and 
non-onset frames, including Mel-frequency Cepstral 
Coefficients (MFCCs), Linear Predictive Cepstrum 
Coefficients (LPCCs), Equal loudness phon values along 
critical bands.  Feature concatenation fusion in feature-
level and linear weighted sum fusion in decision-level are 
then employed to achieve a high level of onset detection 
accuracy.  Evaluated using our singing database, our 
proposed approach to singing onset detection outperforms 
state-of-the-art methods, including methods based on 
phase change [6], pitch change [9], equal loudness [12], 
and inverse-correlation [7]. Re-implementations of these 
methods are used in the evaluation. 

2. DEFINITION OF A SINGING ONSET 

In a non-percussive continuous-pitch instrument, such as 
the melodic singing voice, there is no clear definition of 
an onset. A definition is especially difficult to establish 
when taking into account glissandos1 and portamentos2, 
                                                           
1 Glissandos are glides from one pitch to another, by filling the slide with 
discrete intermediate pitches.  In continuous-pitch instruments, glissando 
is often used interchangeably with the term portamento. 

which are vocal expressions involving pitch glides.  
Traditionally, an onset is the beginning of a new note 
event [5][8], characterized by a change in pitch, amplitude 
envelope, spectral shape, phase, or a combination of the 
mentioned factors [14]. 

However, in a singing voice, which is plagued by 
accidental glissandos, slurring (melisma3) and imperfect 
vocalization, the definition of an onset is a less clear-cut 
one.  It is very often that a singer performs a glissando 
(more accurately, portamento in the singing voice) at the 
beginning or ending of a note, even when a music score 
does not stipulate so.  When a musician is tasked to 
transcribe the singing performance, these portamentos are 
not transcribed into notes.  However, slurred 
performances, which also involve pitch glides, are usually 
transcribed as actual notes, albeit with a legato denotation.  
There is no real physical difference between a portamento 
and a slur in singing performances.  In both cases, the 
singing voice undergoes a continuous change in pitch.  
However, perceptually many glissandos are not 
considered as note onsets.  This is because when listening 
to a singer’s performance, a human subconsciously takes 
into account contextual cues like the rhythm, language 
and style of music. 

The nature of singing onset is strongly related to the 
manner of articulation in speech.  A singing voice has 
strong harmonic components producing numerous timbral 
differences, which are interpreted as different phonemes 
by the human ear.  Singing onsets usually, though not 
always, occur during vowel-onsets. 

Since there is no known existing definition for a 
singing onset, it is crucial to define one before even 
attempting to evaluate the effectiveness of a singing onset 
detector.  In [5], an onset is defined as the start of the 
transient, but in a pitched singing voice (and many PNP 
instruments), there are numerous notes with no observable 
transient, particularly during slurs.  A singing 
performance may also contain long stretches of unvoiced 
consonant segments, typically at the beginning or end of 
the note.  These unvoiced segments are too varied and 
inconsistent to base the definition of a singing note onset 
on, and should simply be regarded as noise in the 
annotation process, not as part of a singing note.  An onset 
should be marked at the end of a consonant, not before or 
during the consonant. 

For practical purposes, it is intuitive and reasonable to 
define a singing onset as follows: The beginning of a new 
human-perceived note, taking into account contextual 
cues.  This excludes erroneous portamentos during note 
beginnings, transitions and trail-offs, but includes pitch 
changes in slurring.  The actual notes included in a slur 

                                                                                                
2 Portamentos are continuous glides from one pitch to another, usually 
produced as an effect by continuous-pitch instruments. 
3 Melisma is the act of changing pitch on a single syllable of sung text. 
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may be subject to human interpretation, since it is possible 
that a singer reaches the correct pitch only very briefly 
during a slur.  Slurred notes that occur too briefly for an 
average human auditory system to reliably detect should 
not be included.  The precise location of an onset in a slur 
is also subjective, and allowances ought to be made for 
human bias. 

3. FEATURE EXTRACTION 

The effectiveness of any onset detection function 
ultimately depends on the audio features used in the 
system.  It is necessary to employ features that provide 
useful information on whether or not a frame contains an 
onset. 

  Features capable of capturing timbral differences 
should provide a reliable measure for onset detection.  
Pitch and energy features could provide important 
information regarding onset detection as well, but are 
much less reliable.  We have chosen to focus on features 
that provide information on the spectral shape, since a 
timbral change is the main characteristic of an onset. 

3.1. Mel Frequency Cepstral Coefficients 

MFCCs represent audio by a type of cepstral 
representation. In a mel-frequency cepstrum, the 
frequency bands are positioned on a mel-scale, which 
aims to approximate the human auditory system’s 
response. 

It is a common feature used in speech recognition, and 
can be derived by first taking the Fourier transform of a 
(windowed) signal, mapping the log-amplitudes of the 
resulting spectrum into the mel-scale, then performing 
DCT on the mel log-amplitudes.  The amplitudes of the 
resultant cepstrum are the MFCCs.  Since DCT holds 
most of the signal information in the lower bands, the 
higher coefficients can be truncated without excessive 
information loss.  In our system, we extracted MFCC 
features with 81 mel-scale filter banks and 23 DCT 
coefficients. 

The coefficients are concatenated with their first and 
second-order derivatives to form a feature vector of 69 
dimensions.  This improves the performance of the 
system, due to the correlation of the MFCCs and the 
derivatives at feature-level. 

3.2. Linear Predictive Cepstrum Coefficients 

LPCCs are LPC coefficients transformed into cepstra, and 
are widely used in speech recognition systems.  An 
efficient method of obtaining the coefficients using 
Levinsin-Durbin recursion is covered in detail in [1].  
Once we obtain the LPC coefficients, they can be 
transformed into cepstra by [4]: 
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where 1... Nc c  is the set of cepstral coefficients of order 

N.  In our system, we used 22 cepstral coefficients, 
appended with 44 coefficients of the first and second 
order derivatives, similar to the feature-level fusion 
performed in the extraction of MFCCs. 

3.3. Critical bands 

Grouping frequency bins into critical bands is a 
psychoacoustically motivated principle.  In [11], 36 bands 
of triangular-response bandwidth were used along the 
critical bands, and power in each band was used to derive 
a detection function.  Detection functions based on equal-
loudness changes in Equivalent Rectangular Bandwidth 
(ERB) bands have also been used in the past [8]: 

1021.4 log  (4.37 F + 1)                 (2) 

where  is the ERB band number, F is the bin frequency 
in kHz.  By grouping frequency bins into ERB bands, we 
greatly reduce the dimensionality of the spectra.  In [8], 
the power in individual ERB bands were mapped into 
phon values using equal-loudness contours [3].  In our 
system, we replicate the method introduced in [8], but 
only 36 ERB bands are used (includes frequencies of up 
to 11kHz) for audio files sampled at 22.05kHz. 

3.4. Other Features Combined 

Pitch-stability, zero-crossing rate and signal periodicity 
are all simple features which may contain information 
about note onsets.  These features are commonly used, 
and can be concatenated into a combined feature vector.  
This feature-level data fusion is sensible for features 
which are characteristic of onset frames, especially if the 
features are of low dimensionality.  Features which are of 
no value to the onset detection problem should not be 
included, as they corrupt the feature space and hence 
degrade the system performance.  In our system, we used 
pitch stability, zero-crossing rate and signal periodicity 
and their derivatives as the combined vector. 

4. GMM TRAINING AND SCORING 

GMM-based modeling of speech signals has been the 
principal approach for speech and speaker recognition 
systems in recent years. It has been successfully 
implemented in [16] for speaker identification with very 
good results.  Like speaker identification, onset detection 
can be modeled as a classification problem.  At each time 
step, we need to classify a frame of audio into the onset 
class or a non-onset class.  
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Onset detection based on probabilistic models has 
increasingly been the preferred approach in recent audio 
research.  Of particular interest are systems that employ 
machine learning algorithms that produced promising 
results, like Lacoste and Eck’s FNN system [13].  Inspired 
by the success in speech processing systems, and in view 
of the similarity between the two problems, we employed 
a supervised machine learning algorithm using GMM 
classifiers. 

4.1. GMM-based supervised machine learning 
 

For each feature type, we model the probability of onset 
and probability of non-onset as random variables drawn 
from a Gaussian probability distribution of the feature 
vectors.  Using a GMM to model the probability of onset 
random variable, we have: 

1

( | ) ( )
M

n onset i i n

i

P x w p x                      (3) 

where ( | )n onsetP x is the probability that feature 

vector nx  belongs to the onset class; iw gives the weight 

of each of the M mixtures, and for each mixture:  
11
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The parameters i and i are the mean vector of 

dimensionality D, and the DxD covariance matrix, 
respectively.  The parameters of the GMM can then be 
denoted , ,onset i i iw where i=1…M.  In our 

system, diagonal covariance matrices are used to 
parameterize the GMM, and 64 mixtures are chosen based 
on experiments. To train the onset GMM, the onset class 
training features are selected as the feature vectors of 
frames containing a hand-marked onset plus 3 frames at 
either side of each onset frame, which includes a total of 
560 onsets (3920 frames). 

We train this GMM by using the Expectation-
Maximization (EM) algorithm [15] to profile the 
distribution of the onset-class feature vectors.  We then 
proceed to construct another GMM, non onset , from the 

remaining feature vectors (21060 frames) for the non-
onset class using (3) and (4). 

4.2. Derivation of a Detection Function 
 

With our trained GMMs (onset and non-onset classes), the 
probabilities ( | )n onsetP x and ( | )n non onsetP x of each 

new feature vector can then be obtained.  That is, for each 
new feature vector in time, we measure the likelihood that 

they belong to the onset and non-onset class.  A viable 
detection function for our system will then be: 

( ) ( | ) ( | )t onset t non onsetdf t P x P x +1     (5) 

where tx is a feature vector of the audio signal obtained at 

time t.  The detection function is then normalized to a 
range of [0…1]. 

5. DETECTION FUNCTION FUSION AND 
..PEAK-PICKING 

As aforementioned, for each feature type, we train 2 
GMMs (for onset-class and non-onset-class features).  
Since we could have several feature types, we train a pair 
of GMMs for each feature type and derive a detection 
function for them using (5).  Thereafter, we linearly weigh 
each of the detection function, and compute a sum of the 
individual weighted detection functions to produce a 
combined detection function: 

1

( ) ( )
F

i i

i

df t w df t                         (6) 

F is the number of feature types, and iw gives the weight 

of each of the detection functions. 
It is also possible to use only a pair of GMMs, by 

simply concatenating the dimensions of each of the 
individual feature vector into a single feature vector at the 
feature-level, but solely relying on such an approach will 
increase the dimensionality of the feature space 
considerably, and it will require exponentially more 
training data in order to fully train the GMMs, according 
to the curse of dimensionality1.  It is therefore prudent to 
keep each of our feature space limited to a feature type 
and its derivatives, possibly except for simple features of 
very low dimensions. 

Once we obtain the detection function described by (6), 
we apply a de facto standard median-filter peak-picking 
algorithm, used in both [5] and [8] to evaluate the 
detection functions.  The output of the peak-picking 
process is a series of onset locations denoting the time 
points at which an onset has occurred. 

6. EXPERIMENTAL RESULTS 

6.1. Database Description 

Our database consists of 18 singing recordings of pop 
songs, from 4 singers (2 male, 2 female) of varied singing 
styles.  The pieces were annotated by hand for onsets, and 
contained a total of 1127 onsets.  Approximately half 

                                                           
1 Curse of dimensionality is a term coined by Richard Bellman (1920-
1984) describing the exponential relationship between volume and 
dimensionality. 
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(560) of the onsets were used for training GMMs, and the 
other half (567) were used to evaluate the system. 

Each recording was annotated and cross checked by 
two amateur musicians.  Onsets were first identified by 
ear, and then marked at positions where the wave form 
was first observed to follow a periodic structure.  
Consonant noise and unintentional portamentos / 
glissandos do not constitute new onsets, as explained in 
Section 2.  For legato, an onset was marked at the point 
where a pitch change was perceived to begin. 

6.2. Evaluation of Individual Detection Functions 

For evaluation of the individual onset detection functions, 
we extract all the features mentioned in Section 3 and 
score each feature type based on a pair of trained GMMs 
(onset and non-onset GMMs).  From the detection 
function produced by (5) for each feature type, we apply 
the median-filter peak-picking process across different 
parameters. We evaluate the usefulness of the feature by 
the metrics of precision, recall and F-measure, based on 
an onset tolerance of 50ms. Based on an onset tolerance 
of 50ms. These evaluation conditions are identical to 
those in the annual MIREX Audio Onset Detection 
contest. 

The onset detection results of individual features are 
shown in Figure 3. The best F-measure among the set of 
peak-picking parameters is selected for each feature.  
From our experiments, MFCC is revealed to be the best 
audio feature, producing the best results of 80.3% 
precision, 77.8% recall and 79.0% F-measure.  LPCC is 
next best, with 72.9% precision, 77.7% recall, and F-
measure 75.3%.  ERB-bands produce 78.2% precision, 
69.5% recall, and 73.6% F-measure.  The combined 
vector produces 60.1% precision, 86.1% recall, and 
70.8% F-measure.  
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Figure 3: Evaluation results of individual detection 
function 

6.3. Evaluation of Combined Detection Function 
 
Based on the performance of all evaluated detection 
functions, we search the best linear weights based on 
extensive experiments and compute an overall detection 

function described by (6). The weight distribution is 
shown in Table 1. 

 

Detection Function produced by: Weight 

MFCC 0.76 

LPCC 0.12 

ERB-bands 0.10 

Combined vector 0.02 

Table 1: Weight distribution for detection 
functions 

 
Using the sum of linearly-weighted detection functions, 

we achieve the best performance of 86.5% precision, 
83.9% recall, and 85.2% F-measure, which is superior to 
current state-of-the-art methods.  As can be seen in Figure 
4, most existing methods do not perform well on singing 
music. Equal loudness change based method produces an 
F-measure of 71.0% under the best set of parameters. 
Both the phase-based and pitch-based methods perform 
badly because the singing voice’s pitch track is very 
unstable, and contains many noisy segments. 
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Figure 4: Results of linear-weighted sum detection 
function compared with state-of-the-art methods 

The parameters for the system, especially those used in 
the GMM and individual features, were determined 
through extensive experimentation. 

7. DISCUSSIONS AND FUTURE WORK 

In our system, we have employed both feature-level and 
decision-level fusion.  Feature-level fusion works well, 
but the higher dimensionality necessitates higher volume 
of training data.  Our system was trained with only 560 
onsets, due to the laborious process annotating pieces by 
hand.  More training and testing data ought to be used to 
validate the system’s performance. 

We utilized only 4 pairs of GMMs: for MFCC, LPCC, 
ERB-bands, and a combined feature.  In reality, any 
number of feature types can be used, and fusion can be 
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done at the feature-level (e.g. concatenation) and/or at 
decision-level (e.g. linear weighted sum).  As a rough 
guide, more feature types and detection functions usually 
produce better onset detection results.  This is provided 
the features extracted are representative of the onset 
classification problem, i.e. there should be a discernible 
difference in feature between onset and non-onset frames.  

Weight-assignments for linear-weighted sum fusion are 
usually based on heuristics, and require lengthy 
experiments to optimize.  Even though it generally works 
well, the simple linear weighting method can cause false 
peaks in detection functions to propagate into the 
combined detection function, making the overall detection 
function noisy.  Other decision-level fusion techniques 
exist, and ought to be explored and tested. 

We also look forward to expanding the system by 
incorporating note segmentation, as well as more 
functions in the post-processing section. 

8. CONCLUSION 

As shown by our experiments, the proposed supervised 
machine-learning approach based on GMM modeling 
produces higher accuracy for singing onset detection.  
Clearly, the system produces better results than state-of-
the-art singing voice onset detection algorithms.  Further 
improvements by decision-level fusion of the system 
boost the overall accuracy and completeness of the 
system.  The singing onset detection problem cannot be 
considered solved by our system, but its potential is 
promising. 
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