
ISMIR 2008 – Session 1d – MIR Platforms

SUPPORT FOR MIR PROTOTYPING AND REAL-TIME
APPLICATIONS IN THE CHUCK PROGRAMMING

LANGUAGE

Rebecca Fiebrink Ge Wang Perry Cook
Princeton University

fiebrink@princeton.edu

Stanford University
ge@ccrma.stanford.edu

Princeton University
prc@cs.princeton.edu

ABSTRACT

In this paper, we discuss our recent additions of audio
analysis and machine learning infrastructure to the ChucK
music programming language, wherein we provide a
complementary system prototyping framework for MIR
researchers and lower the barriers to applying many MIR
algorithms in live music performance. The new language
capabilities preserve ChucK’s breadth of control—from
high-level control using building block components to
sample-level manipulation—and on-the-fly re-
programmability, allowing the programmer to experiment
with new features, signal processing techniques, and
learning algorithms with ease and flexibility. Furthermore,
our additions integrate tightly with ChucK’s synthesis
system, allowing the programmer to apply the results of
analysis and learning to drive real-time music creation and
interaction within a single framework. In this paper, we
motivate and describe our recent additions to the
language, outline a ChucK-based approach to rapid MIR
prototyping, present three case studies in which we have
applied ChucK to audio analysis and MIR tasks, and
introduce our new toolkit to facilitate experimentation
with analysis and learning in the language.

1. INTRODUCTION

ChucK [13] began as a high-level programming language
for music and sound synthesis, whose design goals
included offering the musician user a wide breadth of
programmable control—from the structural level down to
the sample level—using a clear and concise syntax, and
employing a set of abstractions and built-in objects to
facilitate rapid prototyping and live coding. We have
recently expanded the language to provide support for
audio analysis and machine learning, with two primary
goals: first, to offer real-time and on-the-fly analysis and
learning capabilities to computer music composers and
performers; and second, to offer music information
retrieval (MIR) researchers a new platform for rapid
prototyping and for easily porting algorithms to a real-
time performance context. We address the former goal in
[6]; here, we focus on the latter.

We begin in Section 2 by reviewing prototyping in
MIR and motivating the need for additional shared tools
between MIR and performance. We describe the ChucK

language as it is used for music creation, including
prototyping and live coding systems. In Section 3, we
describe in some detail how we have incorporated analysis
and learning into the language, with attention both to
preserving the flexible and powerful control that makes
ChucK suited for prototyping and experimentation, and to
tightly and naturally integrating the new functionality with
ChucK’s synthesis framework. Sections 4 and 5 illustrate
the new potential of ChucK as an MIR rapid prototyping
workbench, introducing an example working pipeline for
prototyping an MIR task and presenting three examples of
how we have used ChucK to perform and teach music
analysis. Finally, in Section 6 we discuss ongoing work to
improve ChucK as an MIR tool and announce the release
of a toolkit containing examples and supporting code for
MIR researchers desiring to experiment with the language.

2. BACKGROUND AND MOTIVATION

2.1. MIR Prototyping

One primary goal in this work is to provide a new rapid
prototyping environment for MIR research. Our definition
of an MIR prototyping environment includes: the ability
to design new signal processing algorithms, audio feature
extractors, and learning algorithms; the ability to apply
new and existing signal processing, feature extraction, and
learning algorithms in new ways; and the ability to do
these tasks quickly by taking advantage of high-level
building blocks for common tasks, and by controlling the
system either via a GUI or through concise and clear code.
Furthermore, a prototyping system should encourage
experimentation and exploration. There exist several
programming environments for MIR that accommodate
many of the above requirements, including Matlab, M2K1,
MARSYAS [12], CLAM [1], and Weka [15], and their
popularity suggests that they meet the needs of many MIR
research tasks. We propose that ChucK also meets all of
these requirements and inhabits a complementary place in
the palette of tools at the MIR researcher’s disposal. In
particular, ChucK features real-time support for analysis
and synthesis, easy accommodation of concurrency and
auditory feedback, and a syntax and running environment

1 http://www.music-ir.org/evaluation/m2k/index.html

153

ISMIR 2008 – Session 1d – MIR Platforms

that encourage a development cycle rapid enough for live-
coding, in which the performer modifies the code in a live
performance [14]. As we discuss below, ChucK is
therefore able to facilitate a rapid, feedback-driven, real-
time and performance-enabled approach to MIR
prototyping that is not a primary concern of other tools.

2.2. MIR and Music Performance

Research in MIR has primarily focused on analyzing and
understanding recorded audio, static symbolic
representations (e.g., MIDI or Humdrum files) and other
non-performative musical representations and metadata.
There is some exceptional work, notably real-time score-
following and accompaniment systems such as [8], [11].
However, many other popular music information retrieval
tasks, such as mood and style analysis and instrumentation
and harmony identification, are directly pertinent to real-
time interactive performance, and the relevance of core
MIR work to live music remains under-exploited.

For one thing, a primary focus of MIR is building
computer systems that understand musical audio at a
semantic level (e.g., genre, rhythm, mood, harmony), so
that humans can search through, retrieve, visualize, and
otherwise interact with musical data in a meaningful way.
Making sense of audio data at this higher level is also
essential to machine musicianship, wherein the
performing computer—like any musically trained human
collaborator—is charged with interacting with other
performers in musically appropriate ways [10].

Despite the shared need to extract useful features from
audio, and to bridge the gap between low-level audio
features and higher-level musical properties, there does
not exist a shared tool set for accomplishing these tasks in
both computer music and MIR. On one hand, most
computer music languages do not readily accommodate
analysis of audio in the language; for example, highly
custom spectral analysis and processing tasks must be
coded in C++ externals in order to be used in
SuperCollider or Max/MSP. Externals’ development
overhead, enslavement to the audio and control rates and
APIs of the associated music language, and unsuitability
as recursive building blocks within larger analysis
algorithms make them an unattractive choice for MIR
researchers (not to mention musicians). On the other hand,
most MIR toolkits and frameworks do not support real-
time audio processing or synthesis. Those that do (namely
MARSYAS [3] and CLAM [1]) do not offer the full-
fledged synthesis and interaction support of a computer
music language, so while popular among MIR
researchers, they do not have widespread adoption among
computer musicians.

Computer musicians would undoubtedly benefit from
lower barriers to adapting state-of-the-art MIR algorithms
for pitch tracking, beat tracking, etc. for their real-time
performance needs. We additionally posit that MIR
researchers can benefit from increased collaboration with

musicians and composers, which does not suffer from the
common challenges of copyright restrictions on obtaining
data or releasing systems to the public, nor the difficulty
and expense in obtaining reasonable ground truth to
perform evaluations. Additionally, applying MIR research
in music performance can offer researchers outside of
industry a greater potential to directly impact people’s
experiences with music.

We realize that no single tool will meet the needs of
everyone in computer music and MIR, but we propose to
lower barriers to working at the intersection of these
fields—in analysis-driven computer music and real-time,
potentially performance-oriented MIR—via a full-fledged
computer music language that allows for arbitrarily
complex signal processing and analysis tasks within a
user-extensible, object oriented framework.

2.3. ChucK

ChucK is a cross-platform, open-source computer music
programming language [13] whose primary design goals
include the precise programmability of time and
concurrency, with an emphasis on encouraging concise,
readable code. System throughput for real-time audio is an
important consideration, but first and foremost, the
language was designed to provide maximal control and
flexibility for the audio programmer. In particular, key
properties of the language are as follows:
• Flexibility: The programmer may specify both high-

level (e.g., patching an oscillator to a filter, or
initiating structural musical events) and low-level,
time-based operations (e.g., inspecting and
transforming individual samples) in a single unified
language mechanism, without any need for externals.

• Readability: The language provides a strong
correspondence between code structure, time, and
audio building blocks; as a result, the language is
increasingly being used a teaching tool in computer
music programs, including at Princeton, Stanford,
Georgia Tech, and CalArts.

• Modularity: Like many other languages, ChucK
encapsulates behaviors of synthesis building blocks
(filters, oscillators, etc.) using the “Unit Generator”
model. Its object-oriented nature also supports
modular user code.

• A “do-it-yourself” approach: By combining the ease
of high-level computer music environments with the
expressiveness of lower-level languages, ChucK
supports high-level musical representations, as well as
the prototyping and implementation of low-level,
“white-box” signal-processing elements in the same
language.

• Explicit treatment of time: There is no fixed control
rate. It’s possible to assert control on any unit
generator at any point in time, and at any rate, in a
sub-sample-precise manner.

154

ISMIR 2008 – Session 1d – MIR Platforms

• Concurrency: Parallel processes (called shreds) share
a notion of time, so one can precisely synchronize and
easily reason about parallel code modules according to
each’s treatment of time. Parallelism is easy and
expressive.

• On-the-fly programming: Programs can be edited as
they run; this functionality is supported and
encouraged in the miniAudicle development
environment1.

The following example synthesis code illustrates several
of these concepts. In it, an impulse train is synthesized,
and its frequency is modified in a concurrent parallel
function at an arbitrary “control rate.”

Figure 1: Simple concurrent ChucK code. Note
that ‘… => now’ acts to control program execution

in time, and ‘=>’ alone acts as a left-to-right
assignment operator.

3. ADDITIONS TO CHUCK

3.1. Unit Analyzers

In previous work, we introduced a language-based
solution to combining audio analysis and synthesis in the
same high-level programming environment of ChucK
[15]. The new analysis framework inherited the same
sample-synchronous precision and clarity of the existing
synthesis framework, while adding analysis-specific
mechanisms where appropriate. The solution consisted of
three key components. First, we introduced the notion of a
Unit Analyzer (UAna), similar to its synthesis counterpart,
the Unit Generator (UGen), but augmented with a set of
operations and semantics tailored towards analysis. Next,
we introduced an augmented dataflow model to express
dependencies among unit analyzers (UAnae), and to

1 http://audicle.cs.princeton.edu/mini/

manage caching and computation accordingly. Third, we
ensured that the analysis framework made use of the
existing timing, concurrency, and on-the-fly programming
mechanisms in ChucK as a way to precisely control
analysis processes.

Figure 2: An example analysis patch

For example, it’s possible to instantiate an FFT object
for spectral analysis, instantiate spectral centroid and
spectral rolloff objects that compute using the output of
the FFT, and trigger the extraction of each feature at its
own rate. Code for this task appears in Figure 2. The
programmer has dynamic, sample-precise control over
analysis parameters such as FFT/IFFT sizes, analysis
windows, hop sizes, feature extraction rates, etc. The
primary advantages of using ChucK for analysis are
threefold:
• Conciseness: ChucK implicitly manages real-time

audio and buffering, and the language is tailored for
audio, so analysis system implementation time and
code length are greatly reduced.

• Rapid turnaround experimentation: Through the
application of on-the-fly programming and ChucK’s
concise audio programming syntax, one can quickly
prototype systems and sub-systems, changing
parameters as well as the underlying system structure,
and experience the results almost immediately.

• Concurrency: Parallel management of feature
extraction, even at multiple rates, is straightforward in
ChucK. This sample-synchronous concurrency would
be extremely challenging and/or inefficient in C++,
Java, or a library built in these languages, due to their
support for preemptive, thread-based concurrency, and
the consequent need to contend with thread-
instantiation, synchronization, bookkeeping, etc.

155

ISMIR 2008 – Session 1d – MIR Platforms

These highly useful flexibilities come with a tradeoff:
system performance and throughput. A system
implemented in reasonable ChucK code would likely run
much less efficiently than an optimized C++
implementation. In this regard, it may be desirable to
leverage the flexibility and rapid experimentation abilities
of ChucK to prototype systems and components, and if
needed, then implement “production” code in a low-level
language with an optimizing compiler. But for researchers
experimenting with new MIR algorithms, such a
prototyping stage can be instrumental in crafting new
systems and testing the feasibility of new ideas.

3.2. Learning Framework

A natural consequence of ChucK’s analysis capabilities is
that analysis results can be treated as features whose
relationship to high-level musical concepts can be learned
via labeled examples and standard classification
algorithms. Classification is a common and powerful
technique in MIR, and it has been applied successfully to
MIR problems such as genre [2], mood [7], and
transcription [5]. Classification has also been widely used
in computer music for tasks such as pitch tracking [9], and
learning is a key component of the aforementioned
accompaniment and score-following systems. ChucK’s
learning framework was designed with the recognition
that a general tool for learning could be useful for
accomplishing both MIR analysis tasks and creative
compositional tasks, and with acknowledgment that
classification of streaming audio is a task that should be
natural to perform in real time.

We have built an object-oriented classification
framework in ChucK, modeled on the architecture and
naming conventions of Weka [16], a popular Java
framework for applied machine learning. Classification
algorithms such as k-nearest-neighbor and AdaBoost are
implemented as ChucK classes which inherit from a
parent Classifier class. Each Classifier can be trained on a
dataset, represented by an Instances class, and trained
Classifiers can be used to assign class predictions to new
Instance objects. Because this infrastructure is all written
in ChucK, users can easily add their own Classifier child
classes in Chuck, as well as modify not just classification
parameters but also the underlying algorithms on-the-fly.
We have also implemented a suite of standard MIR
features, listed in Table 1.

Note that the implementation of ChucK’s analysis and
learning capabilities preserves its suitability for rapid
prototyping, and extends this capability to many MIR
tasks. In particular, the user retains sample-level control
over audio processing, allowing easy implementation of
new feature extraction methods and signal processing
algorithms directly in the language. Learning algorithms
are also implemented in the language, affording the user
arbitrary modification of these algorithms at any time,

without the need to recompile. Additionally, the user can
choose from standard MIR features and standard
classifiers that have already been implemented, and use
these out-of-the-box. Furthermore, the ability to code
features and algorithms precisely in ChucK, within its
object-oriented framework, means that the user can create
new “white-box” features and classifiers for immediate
usage. In short, ChucK meets the requirements we believe
to be important to a prototyping environment.

FFT, IFFT, DCT, IDCT
Spectral centroid, spread,
 rolloff, and flux
Mel- and real-frequency
 cepstral coefficients

LPC coefficients
Zero crossing rate
RMS
Cross- and auto-
 correlation

Table 1: MIR features in ChucK

4. AN MIR PROTOTYPING PIPELINE

Here we provide an example of how an MIR student or
researcher might approach working with the MIR
prototyping system of ChucK. Perhaps someone has an
idea for an audio analysis task. One can use ChucK to
write relevant code immediately: in particular, the
programmer can 1) quickly instantiate and connect
together essential unit analyzers (FFT’s, feature
extractors, etc.), then 2) specify any initial parameters, and
3) write control code, potentially in concurrent chuck
processes (shreds). If a learning algorithm is part of the
task, the programmer will additionally instantiate a
classifier and set its parameters, and include control code
for passing the extracted feature vectors to the classifier
during training and testing stages. The programmer can
ignore issues of audio buffering, dependencies among
analysis results (e.g., spectral centroid requires an FFT),
concurrency management, etc., as these are handled by
ChucK, and instead focus on the content of the algorithm.

As soon as a basic skeleton for the algorithm is
written, the programmer can immediately run the code and
observe the output (which can easily be sonified, if
desired). At this point, the programmer can augment or
tweak the parameters and underlying structures of the
system via on-the-fly programming. For example, the
programmer can easily change STFT window type, size,
zero-padding, and hop size, or add and remove the
features used in classification, and immediately observe
the consequences of these changes. It is in this focal stage
of prototyping, wherein the programmer interactively
tunes system performance and logic, that ChucK is most
uniquely powerful as a prototyping tool, aided by its live-
coding support in miniAudicle.

5. EXAMPLES

We now present three examples of music analysis systems
that have been built in ChucK. The first is a trained vowel

156

ISMIR 2008 – Session 1d – MIR Platforms

identification system with a GUI interface, which
illustrates the conciseness of interactive ChucK code and
ease with which GUIs can be incorporated. The second is
an implementation of a genre and artist classification
system described in [2], which illustrates the ease of
porting a complex MIR feature extraction and
classification system to ChucK and applying it to real-
time audio input. The third is a discussion of our
experiences employing ChucK’s MIR capabilities as an
educational tool, illustrating its usefulness to MIR and
computer music novices. The code for case studies 1 and 2
is publicly available (see Section 6).

5.1. Simple Visualizations and Classifier

In order to visualize spectral properties of a sound in real-
time, a filter-based sub-band spectral analyzer was
implemented in ChucK using MAUI, miniAudicle’s
framework for graphical widgets. The GUI appears in
Figure 3(a); sliders update to indicate the power in each
octave sub-band in real-time. The entire code for this task
is 25 lines, 15 of which manage the display.

With a simple modification, this code and display can
be used to train a classifier on any task for which sub-band
power is a useful feature, then perform classification (and
useful visual feedback) on new inputs. For example, code
that uses 1/3-octave sub-bands from 200Hz to 4kHz to
train a nearest-neighbor classifier to recognize each of 5
vowels spoken by the user (and silence), to classify the
vowel of new inputs, and to construct the training and
feedback graphical interface shown in Figure 3(b),
requires under 100 lines of code. This includes the
nearest-neighbor classifier coded from scratch (i.e., the
KNN ChucK class was not used here). Clearly, ChucK
allows for concise specification of signal processing
analysis tasks and for real-time GUI display and
input.

Figure 3: GUIs for (a) octave-band spectral
analysis and (b) trained vowel recognition

5.2. Artist Classification

Of obvious concern to MIR researchers interested in
ChucK is whether more complex systems are possible. To
address this, we have implemented one of the genre and
artist classification systems of Bergstra et al. described in
[2]. It uses eight types of standard audio features,
including FFT coefficients, real cepstral coefficients, mel-

frequency cepstral coefficients, zero-crossing rate, spectral
spread, spectral centroid, spectral rolloff, and LPC
coefficients (all are available in ChucK). Means and
variances are computed for each feature over a segment of
consecutive frames, then classified by an AdaBoost
classifier using decision stumps as the weak learners.
Bergstra’s system performed in the top two submissions
for both genre and artist classification at MIREX 2005 [4].

We have embedded this classification approach in a
simple interface for real-time, on-the-fly training and
classification of audio. The user can specify via a
keyboard or graphical interface that the incoming audio
provides examples of a particular class (thereby initiating
the construction of labeled Instances from features
extracted from this audio), initiate the training rounds of
AdaBoost using all available Instances, and then direct the
trained classifier to classify the incoming audio and output
the class predictions to the screen.

Our experimental on-the-fly application of this system
reveals the impressive strength of the features and
classifier; in fact, training on only 6 seconds of audio from
each of two artists, the system is able to classify new
songs’ artists with over 80% accuracy. Furthermore, it is
easy to use the keyboard interface to experiment with
applying this system to new tasks, for example speaker
identification and instrument identification, without
modification to the algorithm or features.

5.3. ChucK as Introductory MIR Teaching Tool

We have used ChucK to teach audio analysis and basic
MIR in introductory computer music courses at Princeton
and Stanford. By leveraging the clarity and flexibility of
representing analysis and MIR concepts in the language,
as well as ChucK’s rapid prototyping and on-the-fly
programming capabilities, we were able to teach the
following topics to students familiar with the basics of the
language:
• Practical real-time, short-time Fourier analysis on

audio signals (both recorded and live), with on-the-fly
demonstration of the effects of window type, window
size, FFT size, and hop size

• Standard spectral- and time-domain audio features,
their extraction algorithms, and real-time exploration
of relationships between audio signals and feature
values

• Classification, including applications to speaker
identification, vowel/consonant analysis, and physical
gesture recognition

• Basic pitch and beat tracking using spectral processing

Additionally, at Stanford, these concepts were taught in
conjunction with a large class project to design a
computer-mediated performance. Although the use of
analysis and MIR algorithms was not a project
requirement, more than one-third of the class integrated
the extraction of some high-level musical information as a

157

ISMIR 2008 – Session 1d – MIR Platforms

component of their final projects. These ranged from real-
time algorithmic processes that employed extracted
features to create compelling accompaniments to a live
flutist, to real-time speech analysis that was transformed
into gestures controlling a Disklavier, to amplitude and
pitch event-triggered generative “sonic clouds.” While
these projects used very basic MIR components, it was
encouraging to witness the students (most of whom had
not worked with MIR or audio analysis before) eagerly
and efficiently experiment in a 2–3 week period and craft
successful musical performances from these
investigations.

6. ONGOING WORK AND CONCLUSIONS

We have made available the ChucK learning infrastructure
described in Section 3.2, code for the first and second
examples described in Section 5, as well as code for
several other example tasks, as part of the Small Music
Information Retrieval toolKit (SMIRK)1. SMIRK will
provide a permanent and growing open-source repository
for music information retrieval infrastructure and
examples using ChucK, targeted at researchers, educators,
and students.

Several improvements to ChucK’s MIR capabilities
are currently underway. First, support for asynchronous
file I/O will allow the reading and writing of large datasets
in a way that does not interfere with audio production.
Second, we are adding more classifiers and support for
modeling, beginning with hidden Markov models.

Our recent additions to ChucK have greatly expanded
its capabilities beyond the realm of sound synthesis and
music performance. Through the integration of analysis
and learning tools, we hope to lower the barriers to
applying MIR algorithms in real-time settings and suggest
a new prototyping paradigm for signal processing, feature
extraction, and learning components of MIR systems. We
are excited by the nascent potential for new creative and
technical work by researchers, musicians, educators, and
students using this new framework.

7. ACKNOWLEDGEMENTS

We thank our students for bravely and creatively
experimenting with ChucK. This material is based upon
work supported under a National Science Foundation
Graduate Research Fellowship.

8. REFERENCES

[1] Amatriain, X., P. Arumi, and D. Garcia, “CLAM: A
framework for efficient and rapid development of
cross-platform audio applications,” Proceedings of

ACM Multimedia, Santa Barbara, CA, 2006.

1 http://smirk.cs.princeton.edu

[2] Bergstra, J., N. Casagrande, D. Erhan, D. Eck, and B.
Kégl, “Aggregate features and AdaBoost for music
classification,” Machine Learning, vol. 65, pp. 473–
84, 2006.

[3] Bray, S., and G. Tzanetakis, “Implicit patching for
dataflow-based audio analysis and synthesis,” Proc.

ISMIR, 2005.

[4] Downie, J. S., K. West, A. Ehmann, and E. Vincent,
“The 2005 Music Information Retrieval Evaluation
exchange (MIREX2005): Preliminary overview,”
Proc. ISMIR, 2005, pp. 320–3.

[5] Ellis, D. P. W., and G. E. Poliner, “Classification
based melody transcription,” Machine Learning, vol.
65, 2006, pp. 439–56.

[6] Fiebrink, R., G. Wang, and P. R. Cook, “Foundations
for on-the-fly learning in the ChucK programming
language,” Proc. ICMC, 2008.

[7] Liu, D., L. Lu, and H.-J. Zhang, “Automatic mood
detection from acoustic music data,” Proc. ISMIR,
2003.

[8] Raphael, C., “A Bayesian network for real-time
musical accompaniment,” Proceedings of Neural

Information Processing Systems, Vancouver, Canada,
2001.

[9] Rodet, X., “What would we like to see our music
machines capable of doing?” Computer Music

Journal, vol. 15, no. 4, Winter 1991, pp. 51–4.

[10] Rowe, R., Machine musicianship. Cambridge, MA:
The MIT Press, 2001.

[11] Schwarz, D., A. Cont, and N. Schnell, “From Boulez
to ballads: Training IRCAM’s score follower,” Proc.

ICMC, 2005.

[12] Tzanetakis, G., and P. R. Cook, “MARSYAS: A
framework for audio analysis,” Organized Sound,
vol. 4, no. 3, 2000.

[13] Wang, G., and P. R. Cook, “ChucK: A concurrent,
on-the-fly audio programming language,” Proc.

ICMC, 2003.

[14] Wang, G. and P. R. Cook, “On-the-fly programming:
Using code as an expressive musical instrument,”
Proceedings of the 2004 International Conference on

New Interfaces for Musical Expression (NIME),
Hamamatsu, Japan, June 2004.

[15] Wang, G., R. Fiebrink, and P. R. Cook, “Combining
analysis and synthesis in the ChucK programming
language,” Proc. ICMC 2007.

[16] Witten, I. H., and E. Frank, Data mining: Practical

machine learning tools and techniques, 2nd ed. San
Francisco: Morgan Kaufmann, 2005.

158

