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ABSTRACT 

In this paper, we discuss our recent additions of audio 
analysis and machine learning infrastructure to the ChucK 
music programming language, wherein we provide a 
complementary system prototyping framework for MIR 
researchers and lower the barriers to applying many MIR 
algorithms in live music performance. The new language 
capabilities preserve ChucK’s breadth of control—from 
high-level control using building block components to 
sample-level manipulation—and on-the-fly re-
programmability, allowing the programmer to experiment 
with new features, signal processing techniques, and 
learning algorithms with ease and flexibility. Furthermore, 
our additions integrate tightly with ChucK’s synthesis 
system, allowing the programmer to apply the results of 
analysis and learning to drive real-time music creation and 
interaction within a single framework. In this paper, we 
motivate and describe our recent additions to the 
language, outline a ChucK-based approach to rapid MIR 
prototyping, present three case studies in which we have 
applied ChucK to audio analysis and MIR tasks, and 
introduce our new toolkit to facilitate experimentation 
with analysis and learning in the language.  

1.  INTRODUCTION 

ChucK [13] began as a high-level programming language 
for music and sound synthesis, whose design goals 
included offering the musician user a wide breadth of 
programmable control—from the structural level down to 
the sample level—using a clear and concise syntax, and 
employing a set of abstractions and built-in objects to 
facilitate rapid prototyping and live coding. We have 
recently expanded the language to provide support for 
audio analysis and machine learning, with two primary 
goals: first, to offer real-time and on-the-fly analysis and 
learning capabilities to computer music composers and 
performers; and second, to offer music information 
retrieval (MIR) researchers a new platform for rapid 
prototyping and for easily porting algorithms to a real-
time performance context. We address the former goal in 
[6]; here, we focus on the latter. 

We begin in Section 2 by reviewing prototyping in 
MIR and motivating the need for additional shared tools 
between MIR and performance. We describe the ChucK 

language as it is used for music creation, including 
prototyping and live coding systems. In Section 3, we 
describe in some detail how we have incorporated analysis 
and learning into the language, with attention both to 
preserving the flexible and powerful control that makes 
ChucK suited for prototyping and experimentation, and to 
tightly and naturally integrating the new functionality with 
ChucK’s synthesis framework. Sections 4 and 5 illustrate 
the new potential of ChucK as an MIR rapid prototyping 
workbench, introducing an example working pipeline for 
prototyping an MIR task and presenting three examples of 
how we have used ChucK to perform and teach music 
analysis. Finally, in Section 6 we discuss ongoing work to 
improve ChucK as an MIR tool and announce the release 
of a toolkit containing examples and supporting code for 
MIR researchers desiring to experiment with the language. 

2. BACKGROUND AND MOTIVATION 

2.1. MIR Prototyping 

One primary goal in this work is to provide a new rapid 
prototyping environment for MIR research. Our definition 
of an MIR prototyping environment includes: the ability 
to design new signal processing algorithms, audio feature 
extractors, and learning algorithms; the ability to apply 
new and existing signal processing, feature extraction, and 
learning algorithms in new ways; and the ability to do 
these tasks quickly by taking advantage of high-level 
building blocks for common tasks, and by controlling the 
system either via a GUI or through concise and clear code. 
Furthermore, a prototyping system should encourage 
experimentation and exploration. There exist several 
programming environments for MIR that accommodate 
many of the above requirements, including Matlab, M2K1, 
MARSYAS [12], CLAM [1], and Weka [15], and their 
popularity suggests that they meet the needs of many MIR 
research tasks. We propose that ChucK also meets all of 
these requirements and inhabits a complementary place in 
the palette of tools at the MIR researcher’s disposal. In 
particular, ChucK features real-time support for analysis 
and synthesis, easy accommodation of concurrency and 
auditory feedback, and a syntax and running environment 

                                                             
1 http://www.music-ir.org/evaluation/m2k/index.html 
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that encourage a development cycle rapid enough for live-
coding, in which the performer modifies the code in a live 
performance [14]. As we discuss below, ChucK is 
therefore able to facilitate a rapid, feedback-driven, real-
time and performance-enabled approach to MIR 
prototyping that is not a primary concern of other tools. 

2.2. MIR and Music Performance 

Research in MIR has primarily focused on analyzing and 
understanding recorded audio, static symbolic 
representations (e.g., MIDI or Humdrum files) and other 
non-performative musical representations and metadata. 
There is some exceptional work, notably real-time score-
following and accompaniment systems such as [8], [11]. 
However, many other popular music information retrieval 
tasks, such as mood and style analysis and instrumentation 
and harmony identification, are directly pertinent to real-
time interactive performance, and the relevance of core 
MIR work to live music remains under-exploited. 

For one thing, a primary focus of MIR is building 
computer systems that understand musical audio at a 
semantic level (e.g., genre, rhythm, mood, harmony), so 
that humans can search through, retrieve, visualize, and 
otherwise interact with musical data in a meaningful way. 
Making sense of audio data at this higher level is also 
essential to machine musicianship, wherein the 
performing computer—like any musically trained human 
collaborator—is charged with interacting with other 
performers in musically appropriate ways [10].  

Despite the shared need to extract useful features from 
audio, and to bridge the gap between low-level audio 
features and higher-level musical properties, there does 
not exist a shared tool set for accomplishing these tasks in 
both computer music and MIR. On one hand, most 
computer music languages do not readily accommodate 
analysis of audio in the language; for example, highly 
custom spectral analysis and processing tasks must be 
coded in C++ externals in order to be used in 
SuperCollider or Max/MSP. Externals’ development 
overhead, enslavement to the audio and control rates and 
APIs of the associated music language, and unsuitability 
as recursive building blocks within larger analysis 
algorithms make them an unattractive choice for MIR 
researchers (not to mention musicians). On the other hand, 
most MIR toolkits and frameworks do not support real-
time audio processing or synthesis. Those that do (namely 
MARSYAS [3] and CLAM [1]) do not offer the full-
fledged synthesis and interaction support of a computer 
music language, so while popular among MIR 
researchers, they do not have widespread adoption among 
computer musicians. 

Computer musicians would undoubtedly benefit from 
lower barriers to adapting state-of-the-art MIR algorithms 
for pitch tracking, beat tracking, etc. for their real-time 
performance needs. We additionally posit that MIR 
researchers can benefit from increased collaboration with 

musicians and composers, which does not suffer from the 
common challenges of copyright restrictions on obtaining 
data or releasing systems to the public, nor the difficulty 
and expense in obtaining reasonable ground truth to 
perform evaluations. Additionally, applying MIR research 
in music performance can offer researchers outside of 
industry a greater potential to directly impact people’s 
experiences with music. 

We realize that no single tool will meet the needs of 
everyone in computer music and MIR, but we propose to 
lower barriers to working at the intersection of these 
fields—in analysis-driven computer music and real-time, 
potentially performance-oriented MIR—via a full-fledged 
computer music language that allows for arbitrarily 
complex signal processing and analysis tasks within a 
user-extensible, object oriented framework.  

2.3. ChucK 

ChucK is a cross-platform, open-source computer music 
programming language [13] whose primary design goals 
include the precise programmability of time and 
concurrency, with an emphasis on encouraging concise, 
readable code. System throughput for real-time audio is an 
important consideration, but first and foremost, the 
language was designed to provide maximal control and 
flexibility for the audio programmer. In particular, key 
properties of the language are as follows: 
• Flexibility: The programmer may specify both high-

level (e.g., patching an oscillator to a filter, or 
initiating structural musical events) and low-level, 
time-based operations (e.g., inspecting and 
transforming individual samples) in a single unified 
language mechanism, without any need for externals. 

• Readability: The language provides a strong 
correspondence between code structure, time, and 
audio building blocks; as a result, the language is 
increasingly being used a teaching tool in computer 
music programs, including at Princeton, Stanford, 
Georgia Tech, and CalArts. 

• Modularity: Like many other languages, ChucK 
encapsulates behaviors of synthesis building blocks 
(filters, oscillators, etc.) using the “Unit Generator” 
model. Its object-oriented nature also supports 
modular user code. 

• A “do-it-yourself” approach: By combining the ease 
of high-level computer music environments with the 
expressiveness of lower-level languages, ChucK 
supports high-level musical representations, as well as 
the prototyping and implementation of low-level, 
“white-box” signal-processing elements in the same 
language. 

• Explicit treatment of time: There is no fixed control 
rate. It’s possible to assert control on any unit 
generator at any point in time, and at any rate, in a 
sub-sample-precise manner. 
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• Concurrency: Parallel processes (called shreds) share 
a notion of time, so one can precisely synchronize and 
easily reason about parallel code modules according to 
each’s treatment of time. Parallelism is easy and 
expressive. 

• On-the-fly programming: Programs can be edited as 
they run; this functionality is supported and 
encouraged in the miniAudicle development 
environment1. 

The following example synthesis code illustrates several 
of these concepts. In it, an impulse train is synthesized, 
and its frequency is modified in a concurrent parallel 
function at an arbitrary “control rate.” 

 

 

Figure 1: Simple concurrent ChucK code. Note 
that ‘… => now’ acts to control program execution 

in time, and ‘=>’ alone acts as a left-to-right 
assignment operator. 

3. ADDITIONS TO CHUCK 

3.1. Unit Analyzers 

In previous work, we introduced a language-based 
solution to combining audio analysis and synthesis in the 
same high-level programming environment of ChucK 
[15]. The new analysis framework inherited the same 
sample-synchronous precision and clarity of the existing 
synthesis framework, while adding analysis-specific 
mechanisms where appropriate. The solution consisted of 
three key components. First, we introduced the notion of a 
Unit Analyzer (UAna), similar to its synthesis counterpart, 
the Unit Generator (UGen), but augmented with a set of 
operations and semantics tailored towards analysis. Next, 
we introduced an augmented dataflow model to express 
dependencies among unit analyzers (UAnae), and to 

                                                             
1 http://audicle.cs.princeton.edu/mini/ 

manage caching and computation accordingly. Third, we 
ensured that the analysis framework made use of the 
existing timing, concurrency, and on-the-fly programming 
mechanisms in ChucK as a way to precisely control 
analysis processes. 

 

 

Figure 2: An example analysis patch 

For example, it’s possible to instantiate an FFT object 
for spectral analysis, instantiate spectral centroid and 
spectral rolloff objects that compute using the output of 
the FFT, and trigger the extraction of each feature at its 
own rate. Code for this task appears in Figure 2. The 
programmer has dynamic, sample-precise control over 
analysis parameters such as FFT/IFFT sizes, analysis 
windows, hop sizes, feature extraction rates, etc. The 
primary advantages of using ChucK for analysis are 
threefold: 
• Conciseness: ChucK implicitly manages real-time 

audio and buffering, and the language is tailored for 
audio, so analysis system implementation time and 
code length are greatly reduced. 

• Rapid turnaround experimentation: Through the 
application of on-the-fly programming and ChucK’s 
concise audio programming syntax, one can quickly 
prototype systems and sub-systems, changing 
parameters as well as the underlying system structure, 
and experience the results almost immediately. 

• Concurrency: Parallel management of feature 
extraction, even at multiple rates, is straightforward in 
ChucK. This sample-synchronous concurrency would 
be extremely challenging and/or inefficient in C++, 
Java, or a library built in these languages, due to their 
support for preemptive, thread-based concurrency, and 
the consequent need to contend with thread-
instantiation, synchronization, bookkeeping, etc. 
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These highly useful flexibilities come with a tradeoff: 
system performance and throughput. A system 
implemented in reasonable ChucK code would likely run 
much less efficiently than an optimized C++ 
implementation. In this regard, it may be desirable to 
leverage the flexibility and rapid experimentation abilities 
of ChucK to prototype systems and components, and if 
needed, then implement “production” code in a low-level 
language with an optimizing compiler. But for researchers 
experimenting with new MIR algorithms, such a 
prototyping stage can be instrumental in crafting new 
systems and testing the feasibility of new ideas.  

3.2. Learning Framework 

A natural consequence of ChucK’s analysis capabilities is 
that analysis results can be treated as features whose 
relationship to high-level musical concepts can be learned 
via labeled examples and standard classification 
algorithms. Classification is a common and powerful 
technique in MIR, and it has been applied successfully to 
MIR problems such as genre [2], mood [7], and 
transcription [5]. Classification has also been widely used 
in computer music for tasks such as pitch tracking [9], and 
learning is a key component of the aforementioned 
accompaniment and score-following systems. ChucK’s 
learning framework was designed with the recognition 
that a general tool for learning could be useful for 
accomplishing both MIR analysis tasks and creative 
compositional tasks, and with acknowledgment that 
classification of streaming audio is a task that should be 
natural to perform in real time. 

We have built an object-oriented classification 
framework in ChucK, modeled on the architecture and 
naming conventions of Weka [16], a popular Java 
framework for applied machine learning. Classification 
algorithms such as k-nearest-neighbor and AdaBoost are 
implemented as ChucK classes which inherit from a 
parent Classifier class. Each Classifier can be trained on a 
dataset, represented by an Instances class, and trained 
Classifiers can be used to assign class predictions to new 
Instance objects. Because this infrastructure is all written 
in ChucK, users can easily add their own Classifier child 
classes in Chuck, as well as modify not just classification 
parameters but also the underlying algorithms on-the-fly. 
We have also implemented a suite of standard MIR 
features, listed in Table 1. 

Note that the implementation of ChucK’s analysis and 
learning capabilities preserves its suitability for rapid 
prototyping, and extends this capability to many MIR 
tasks. In particular, the user retains sample-level control 
over audio processing, allowing easy implementation of 
new feature extraction methods and signal processing 
algorithms directly in the language. Learning algorithms 
are also implemented in the language, affording the user 
arbitrary modification of these algorithms at any time, 

without the need to recompile. Additionally, the user can 
choose from standard MIR features and standard 
classifiers that have already been implemented, and use 
these out-of-the-box. Furthermore, the ability to code 
features and algorithms precisely in ChucK, within its 
object-oriented framework, means that the user can create 
new “white-box” features and classifiers for immediate 
usage. In short, ChucK meets the requirements we believe 
to be important to a prototyping environment. 

 
FFT, IFFT, DCT, IDCT 
Spectral centroid, spread,    
     rolloff, and flux 
Mel- and real-frequency  
     cepstral coefficients 

LPC coefficients 
Zero crossing rate 
RMS 
Cross- and auto- 
     correlation 

Table 1: MIR features in ChucK 

4. AN MIR PROTOTYPING PIPELINE 

Here we provide an example of how an MIR student or 
researcher might approach working with the MIR 
prototyping system of ChucK. Perhaps someone has an 
idea for an audio analysis task. One can use ChucK to 
write relevant code immediately: in particular, the 
programmer can 1) quickly instantiate and connect 
together essential unit analyzers (FFT’s, feature 
extractors, etc.), then 2) specify any initial parameters, and 
3) write control code, potentially in concurrent chuck 
processes (shreds). If a learning algorithm is part of the 
task, the programmer will additionally instantiate a 
classifier and set its parameters, and include control code 
for passing the extracted feature vectors to the classifier 
during training and testing stages. The programmer can 
ignore issues of audio buffering, dependencies among 
analysis results (e.g., spectral centroid requires an FFT), 
concurrency management, etc., as these are handled by 
ChucK, and instead focus on the content of the algorithm. 

As soon as a basic skeleton for the algorithm is 
written, the programmer can immediately run the code and 
observe the output (which can easily be sonified, if 
desired). At this point, the programmer can augment or 
tweak the parameters and underlying structures of the 
system via on-the-fly programming. For example, the 
programmer can easily change STFT window type, size, 
zero-padding, and hop size, or add and remove the 
features used in classification, and immediately observe 
the consequences of these changes. It is in this focal stage 
of prototyping, wherein the programmer interactively 
tunes system performance and logic, that ChucK is most 
uniquely powerful as a prototyping tool, aided by its live-
coding support in miniAudicle. 

5. EXAMPLES 

We now present three examples of music analysis systems 
that have been built in ChucK. The first is a trained vowel 
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identification system with a GUI interface, which 
illustrates the conciseness of interactive ChucK code and 
ease with which GUIs can be incorporated. The second is 
an implementation of a genre and artist classification 
system described in [2], which illustrates the ease of 
porting a complex MIR feature extraction and 
classification system to ChucK and applying it to real-
time audio input. The third is a discussion of our 
experiences employing ChucK’s MIR capabilities as an 
educational tool, illustrating its usefulness to MIR and 
computer music novices. The code for case studies 1 and 2 
is publicly available (see Section 6). 

5.1. Simple Visualizations and Classifier 

In order to visualize spectral properties of a sound in real-
time, a filter-based sub-band spectral analyzer was 
implemented in ChucK using MAUI, miniAudicle’s 
framework for graphical widgets. The GUI appears in 
Figure 3(a); sliders update to indicate the power in each 
octave sub-band in real-time. The entire code for this task 
is 25 lines, 15 of which manage the display. 

With a simple modification, this code and display can 
be used to train a classifier on any task for which sub-band 
power is a useful feature, then perform classification (and 
useful visual feedback) on new inputs. For example, code 
that uses 1/3-octave sub-bands from 200Hz to 4kHz to 
train a nearest-neighbor classifier to recognize each of 5 
vowels spoken by the user (and silence), to classify the 
vowel of new inputs, and to construct the training and 
feedback graphical interface shown in Figure 3(b), 
requires under 100 lines of code. This includes the 
nearest-neighbor classifier coded from scratch (i.e., the 
KNN ChucK class was not used here). Clearly, ChucK 
allows for concise specification of signal processing 
analysis tasks and for real-time GUI display and 
input.

 

Figure 3: GUIs for (a) octave-band spectral 
analysis and (b) trained vowel recognition 

5.2. Artist Classification 

Of obvious concern to MIR researchers interested in 
ChucK is whether more complex systems are possible. To 
address this, we have implemented one of the genre and 
artist classification systems of Bergstra et al. described in 
[2]. It uses eight types of standard audio features, 
including FFT coefficients, real cepstral coefficients, mel-

frequency cepstral coefficients, zero-crossing rate, spectral 
spread, spectral centroid, spectral rolloff, and LPC 
coefficients (all are available in ChucK). Means and 
variances are computed for each feature over a segment of 
consecutive frames, then classified by an AdaBoost 
classifier using decision stumps as the weak learners. 
Bergstra’s system performed in the top two submissions 
for both genre and artist classification at MIREX 2005 [4]. 

We have embedded this classification approach in a 
simple interface for real-time, on-the-fly training and 
classification of audio. The user can specify via a 
keyboard or graphical interface that the incoming audio 
provides examples of a particular class (thereby initiating 
the construction of labeled Instances from features 
extracted from this audio), initiate the training rounds of 
AdaBoost using all available Instances, and then direct the 
trained classifier to classify the incoming audio and output 
the class predictions to the screen. 

Our experimental on-the-fly application of this system 
reveals the impressive strength of the features and 
classifier; in fact, training on only 6 seconds of audio from 
each of two artists, the system is able to classify new 
songs’ artists with over 80% accuracy. Furthermore, it is 
easy to use the keyboard interface to experiment with 
applying this system to new tasks, for example speaker 
identification and instrument identification, without 
modification to the algorithm or features. 

5.3. ChucK as Introductory MIR Teaching Tool 

We have used ChucK to teach audio analysis and basic 
MIR in introductory computer music courses at Princeton 
and Stanford. By leveraging the clarity and flexibility of 
representing analysis and MIR concepts in the language, 
as well as ChucK’s rapid prototyping and on-the-fly 
programming capabilities, we were able to teach the 
following topics to students familiar with the basics of the 
language: 
• Practical real-time, short-time Fourier analysis on 

audio signals (both recorded and live), with on-the-fly 
demonstration of the effects of window type, window 
size, FFT size, and hop size 

• Standard spectral- and time-domain audio features, 
their extraction algorithms, and real-time exploration 
of relationships between audio signals and feature 
values 

• Classification, including applications to speaker 
identification, vowel/consonant analysis, and physical 
gesture recognition 

• Basic pitch and beat tracking using spectral processing 

Additionally, at Stanford, these concepts were taught in 
conjunction with a large class project to design a 
computer-mediated performance. Although the use of 
analysis and MIR algorithms was not a project 
requirement, more than one-third of the class integrated 
the extraction of some high-level musical information as a 
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component of their final projects. These ranged from real-
time algorithmic processes that employed extracted 
features to create compelling accompaniments to a live 
flutist, to real-time speech analysis that was transformed 
into gestures controlling a Disklavier, to amplitude and 
pitch event-triggered generative “sonic clouds.” While 
these projects used very basic MIR components, it was 
encouraging to witness the students (most of whom had 
not worked with MIR or audio analysis before) eagerly 
and efficiently experiment in a 2–3 week period and craft 
successful musical performances from these 
investigations. 

6. ONGOING WORK AND CONCLUSIONS 

We have made available the ChucK learning infrastructure 
described in Section 3.2, code for the first and second 
examples described in Section 5, as well as code for 
several other example tasks, as part of the Small Music 
Information Retrieval toolKit (SMIRK)1. SMIRK will 
provide a permanent and growing open-source repository 
for music information retrieval infrastructure and 
examples using ChucK, targeted at researchers, educators, 
and students. 

Several improvements to ChucK’s MIR capabilities 
are currently underway. First, support for asynchronous 
file I/O will allow the reading and writing of large datasets 
in a way that does not interfere with audio production. 
Second, we are adding more classifiers and support for 
modeling, beginning with hidden Markov models. 

Our recent additions to ChucK have greatly expanded 
its capabilities beyond the realm of sound synthesis and 
music performance. Through the integration of analysis 
and learning tools, we hope to lower the barriers to 
applying MIR algorithms in real-time settings and suggest 
a new prototyping paradigm for signal processing, feature 
extraction, and learning components of MIR systems. We 
are excited by the nascent potential for new creative and 
technical work by researchers, musicians, educators, and 
students using this new framework. 
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