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ABSTRACT

Music key, a high level feature of musical audio, is an 
effective tool for structural analysis of musical works. 
This paper presents a novel unsupervised approach for 
clustering music recordings by their keys. Based on 
chroma-based features extracted from acoustic signals, an 
inter-recording distance metric which characterizes 
diversity of pitch distribution together with harmonic 
center of music pieces, is introduced to measure 
dissimilarities among musical features. Then, recordings 
are divided into categories via unsupervised clustering, 
where the best number of clusters can be determined 
automatically by minimizing estimated Rand Index. Any 
existing technique for key detection can then be employed 
to identify key assignment for each cluster. Empirical 
evaluation on a dataset of 91 pop songs illustrates an 
average cluster purity of 57.3% and a Rand Index of close 
to 50%, thus highlighting the possibility of integration 
with existing key identification techniques to improve 
accuracy, based on strong cross-correlation data available 
from this framework for input dataset. 

1. INTRODUCTION

Musical key which specifies the tonal center (also called 
tonic), describes the hierarchical pitch relationship in a 
composition. Tonic refers to the most stable pitch in a 
music piece, upon which all other pitches are referenced 
and scale implies pitch set which occur in a passage and 
interval between them. Therefore, key is extremely 
important for music representation and conveys semantic 
information about a composition. Automatic key 
estimation can be applied to many problems in content-
based analysis of music, such as structure analysis and 
emotion detection, and also in music retrieval & 
recommendation systems. 

Although considerable work can be found in the literature 
addressing the problem of estimating music key from 
audio signal automatically, it is still a challenging task. 
Major difficulties lie in the fact that key is a high level 
feature and difficult to extract from audio signals based on 
complexities of polyphonic audio analysis. Krumhansl [9] 

This work was performed in National University of Singapore 

proposed a Maximum key-profile correlation(MKC) 
method that compares spectrum of music piece with key 
profiles which are derived by probe tone rating task and 
represent perceived stability of each chroma within the 
context of a particular key. The key that provides the 
maximum correlation with the music piece is considered as 
the solution[13]. Some modifications of MKC are 
involved, such as [19] which introduces Bayesian 
probabilistic model to infer key profiles from a pattern of 
notes. In [2], Chew described a mathematical model called 
Spiral Array, where pitch class, chord and key are spatially 
aligned to points in 3D space using a knowledge-based 
approach. The distance from tonal center of the music 
piece to the key representation acts as a likely indicator, 
and key estimation is performed through finding the 
nearest neighbor of the music piece. zmirli[6] calculated 
similarity of tonal evolution among music pieces via 
dynamic time warping. Martens et. al.[12] compared 
decision tree methods with distance-based approaches. 
However, supervised classification approaches need a 
large scale of annotated data to train a model and new 
samples can’t be reliably detected. Shenoy and Wang[16] 
adopted a rule-based method that combines higher level 
musical knowledge with lower level audio features. Based 
on a chromagram representation for each beat spaced 
frame of audio, triads are detected and matched against 
templates of key patterns, to identify the key with the 
highest ranking. Zhu and Kankanhalli[23] attempted to 
extract precise pitch profile features for key finding 
algorithms, considering the interference of pitch mistuning 
and percussive noise. Gómez and Herrera [4] extracted 
kinds of descriptors which can represent tonal content of a 
music piece and introduced machine learning models into 
key estimation. HMM based models have also been used 
to identify keys[11,14] and to detect key changes[1] by 
modeling timing and context information during a music 
performance. Most of the techniques discussed above 
suffer from the fact that complexities in polyphonic audio 
analysis make it rather difficult to accurately determine the 
actual template or position for each key. 

In this paper, we propose a novel, unsupervised method to 
cluster music recordings into several categories without 
performing actual key identification. We believe that 
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elimination of training process, along with not having a 
dependency on template patterns of musical keys, makes 
this unsupervised framework applicable across a broad 
range of musical styles and can be fairly easily ported to 
other forms of clustering by changing input feature set. 
The performance of existing key identification approaches 
in the literature, though high, is observed to drop as dataset 
increases or musical recordings do not satisfy set criteria, 
like the presence of a strong beat and time signature of 4/4. 
Cluster information can thus serve as a valuable input to 
increase accuracy of key identification, on the basis of 
strong cross correlation of songs in a specific cluster, and 
the perceived stability of cluster purity over a large data 
set, demonstrated later in the evaluation section. 

The rest of paper is organized as follows: the overview of 
the proposed approach is introduced in Section 2. The 
details of chroma-based extraction and inter-recording 
dissimilarity measurement are presented in Section 3. 
Section 4 describes the approach for cluster generation and 
number of clusters estimation. Experimental results are 
discussed in Section 5. Finally, conclusions are drawn in 
Section 6. 

2. METHOD OVERVIEW 

2.1. Problem Formulation 

Given a dataset of N musical recordings, each one 
performed in one of P different keys, where P, the actual 
number of keys in the specific dataset, is unknown. Our 
aim is to produce a partitioning of the N recordings into M 
clusters such that M=P, and each cluster consists 
exclusively of recordings associated with the same key. 
Existing key identification algorithms could then 
potentially yield an improved performance from this 
cluster information. This schematic for the proposed 
framework is shown in Figure1 below. 

 
Figure 1. Clustering music recordings by their keys 

2.2. System Configuration 

As illustrated in Figure 2, the proposed clustering system 

consists of four major components: chroma-based feature 
extraction, computation of inter-recording dissimilarities, 
cluster generation and estimation of cluster number. 

In the phase of feature extraction, pitch is estimated from 
the audio signal by spectral analysis technique and mapped 
into a chromagram. The dissimilarity computation based 
on chromagram is designed to produce small values for 
dissimilarities between recordings associated with the 
same key and large values for dissimilarities between 
recordings associated with different keys. Then, clusters 
are generated in a bottom-up agglomerative manner, 
followed by an automatic cluster number estimation 
algorithm. 

 
Figure 2. Framework for music clustering by keys 

3. DISSIMILARITY MEASURE 

Inter-recording dissimilarity computation is the most 
critical task in our work. The dissimilarity between 
recordings serves as a distance metric which imparts 
position and distribution of samples in the space. A good 
distance metric helps to gather similar samples together 
and make them easy to cluster. This section provides a 
viable approach to measure dissimilarity between music 
recordings, where spectrum divergence as well as 
harmonic center is taken into account. 

3.1. Chroma-based Feature Extraction 

Chroma-based[17] feature is a musical representation of 
audio data, where spectrum is reduced to 12 bins, 
corresponding to pitch classes in music theory. Intensity of 
frequencies is analyzed from audio and projected onto 
chroma scale. Two pitches separated by an integral 
number of octaves are mapped to the same element in a 
chroma vector. The output feature for each frame is a 12-
dimensional vector, called chromagram, which stores the 
distribution of the energy for each of twelve semitones. 

In our current system, input audio data is divided into half-
overlapping 32ms long frames with Hanning widow. In 
each frame, spectrum is obtained via FFT. Then energy of 
pitches sharing the same pitch class are summed up and 
assigned to the corresponding bin in chroma vector. 
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3.2. SKL Divergence across Chroma Distributions 

Kullback–Leibler divergence[10] in statistics, is a measure 
of difference between probability distributions. Its 
symmetrical version, SKL divergence, is proven to be 
effective for evaluation of distance between spectral 
envelops of audio signal[8,22]. Based on chroma vectors 
discussed in the previous section, we calculate 
expectations of chroma components and normalize them 
by total energy in each music piece. This spectral envelope 
can be interpreted as probability distribution of chroma 
components in a music piece. Thus, SKL divergence is 
utilized to measure difference between two chroma 
distributions with respect to musical keys. 

3.3. Center of Effect 

The spiral array[2] is a computational geometric 
representation for modeling tonality where pitches are 
mapped to points along a spiral in 3D coordinates. First, 
pitch classes are indexed by intervals of perfect fifths from 
a reference pitch, C for example. Then one increment in 
the index which stands for the interval of perfect fifth, 
leads to rotation of one quarter in horizontal plane as well 
as a height gain. And pitches with a major third apart (four 
increments of the index), result in vertical alignment with 
each other. This property satisfies the fact that interval of 
perfect fifth is responsible for the most consonant of the 
unison, while major third is the second. Then center of 
effect(ce) of a music piece is defined as the arithmetic 
mean of each pitch class weighted with its duration. 

In our implementation, most of the configuration is similar 
to [2]. However, when calculating center of effect, we 
adopt energy in chromagram as the weight coefficient 
rather than duration and refined center of effect as: 
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where pitchi denotes the coordinate of ith pitch class and N 
is the total number of frames. 

3.4. Inter-Recording Dissimilarity Measure 

We utilize the linear combination of SKL divergence 
across chroma spectrum and Euclidean distance between 
center of effect to compute the overall dissimilarity 
between music recordings as follow: 

Divspectrum denotes SKL divergence of the chroma spectrum 
envelope, while Disce is the Euclidean distance between 
center of effect of two music recordings. Thus, the overall 
dissimilarity is 
                              spectrumce DivjiDisjiDissim )1(),(),(

where  is a normalization factor which normalizes both 
metrics into the same order, and , a weighting coefficient, 
implies the bias between tonic and scale. They are set to 
0.25 and 0.20 respectively by experience in real 

implementation. The linear combination of the two metrics 
satisfies the assumption that once one of the dissimilarity 
metrics increases, the overall dissimilarity will go up. 

4. CLUSTER GENERATION 

4.1. Agglomerative Clustering 

After computing inter-recording dissimilarities, the next 
step is to assign the recordings deemed similar to each 
other to the same cluster. This is done by an hierarchical 
clustering method[7], which sequentially merges the 
recordings deemed similar to each other. The similarity is 
inferred from the metric described in Section 3.4. The 
algorithm consists of the following procedure: 

Begin 
      initialize M N, and form clusters Ci {Xi}, i=1, 2,..,N 
      Do 
           find the most similar pair of clusters, say Ci and Cj 
           merge Ci and Cj 
           M M 1 
      Until M = 1 
End 

Outcome of the agglomeration procedure is a cluster tree 
with the number of clusters ranging from 1 to N. The tree 
is then cut by optimizing number of cluster, which 
corresponds to an estimation of the number of keys 
actually occurring in the dataset. 

4.2. Estimating Number of Clusters 

According to the music theoretic basis of 24 keys (12 
Major and 12 Relative Minor1) and the fact that not all 
these keys may be necessarily included in any sample data 
set, we limit the cluster number to be a maximum of 24 in 
our framework. However, in order to obtain a higher 
purity which is important for further processing, we can 
relax this limitation to a number, slightly higher than 24. 
Experiment shows that as long as the cluster number range 
is in a small neighborhood, the performance varies slightly. 
Additionally, we utilize a automatic cluster number 
estimation method, which has been used successfully to 
detect the number of speakers in the scenario of speaker 
clustering[21]. 

To evaluate the accuracy of clustering algorithm, here we 
follow the manner of [21], using two basic metrics: cluster 
purity[18] and Rand Index[5,15]. Cluster purity indicates 
the degree of agreement in a cluster. The purity for the    
m-th cluster Cm is defined as: 
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where nmp is the number of recordings in cluster Cm that 
are performed in the p-th key and nm* is the number of 

                                                           
1
 We only consider major keys and natural minor keys here. In the rest of 

this paper, “minor key” refers to natural minor key except as noted. 
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recordings in the cluster of Cm. Deriving from Equation 3, 

purity follows 1
1

*
m

m

purity
n

and is proportion to the 

probability that two music recordings in a cluster are in the 
same key. Specifically, the overall performance can be 
evaluated using average purity for all clusters: 
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The average purity is monotonically increasing with 
cluster number. This is based on the fact that as the 
number of clusters increases, average count of recordings 
in each cluster decreases, which leads to a higher purity. 
Hence, purity is not suitable for evaluating clustering 
performance, when the number of clusters is uncertain. 

In contrast, Rand index, implying the extent of divergence 
of clustering result, is the number of incorrect pairs, 
actually performed in the same key but are placed in 
different clusters and vice versa. 

Let n*p denotes the number of recordings associated with 
the p-th key. Rand index can be calculated by: 
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Rand index can also be represented as a mis-clustering rate: 
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It’s obvious that the smaller the value of R(M) is, the better 
the cluster performance will be. It has been proven that the 
approximately minimal value will be achieved, when the 
number of cluster is equal to the actual number of keys 
occurring in the dataset[21]. So our task is to search for a 
proper cluster number, such that Rand Index is minimized. 

Recalling the Rand Index in Equation 5, the first term in 

the right side of the equation, , can be computed 

based on the clustering result. Meanwhile the second 

term, , is a constant irrelevant to clustering. The third 

term,  requires that the true key attribute of each 

recording is known in advance, which cannot be computed 
directly. To solve this problem, we represent it by 
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where (·) is Kronecker Delta function, hi is the index of 
cluster where the i-th recording is located, and oi is the true 

key attribute of the i-th recording. Note that hi, 1 i N, is 
an integer between 1 and M, if M clusters are generated. 
The term (oi,oj) in Equation 7 is then approximated by the 
similarity between Xi and Xj. 
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where S(Xi, Xj) is a similarity measure between Xi and Xj, 
and 0 S(Xi, Xj) 1, which derives from dissimilarity 
metric(Equation 2). Hence, the optimal set of cluster 
indices can be determined by 
                                                              )('minarg* MRM
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5. EXPERIMENT 

The evaluation of the framework has been carried out in 
two phases - effectiveness of the dissimilarity metrics, and 
the clustering algorithm. The test dataset consists of 91 
pop songs, which include 21 out of 24 keys. The audio has 
been collected from CD recordings and contain the singing 
voice together with musical instrument accompaniment. 
The files are stored as 44 kHz, 16 bit, mono PCM 
waveform. Ground truth for the actual key information has 
been obtained from commercially available sheet music1. 

5.1. Dissimilarity efficiency validation 

For convenience, we denote the relationship between 
music pieces as intra-class, relative-class, parallel-class 
and inter-class. Musical pieces with the same key are intra-
class; share the same Major/Relative Minor combination 
of keys are relative-class (for example C Major and A 
Minor); share the same tonic but are in Major and Minor 
modes are parallel-class (e.g. A Major vs. A Minor), while 
inter-class means two pieces are in unrelated keys. The 
Dissimilarity evaluation is carried out using SKL 
Divergence of chroma spectrum and Euclidian Distance 
between center of effect, of two music recordings. The 
results are discussed below: 

  
SKL Divergence 

of chroma 
spectrum 

Euclidian Distance 
between Center of 

Effect 

average 0.1402 0.2917
Stat. lower bound2 0.0004 0.0193

Intra 
class 

Stat. upper bound 0.2177 0.4419
average 0.1860 0.3344

Stat. lower bound 0.0330 0.0675
Relative 

class 
Stat. upper bound 0.4777 0.5224

average 0.2715 0.5160Parallel 
class Stat. lower bound 0.0740 0.2317

                                                           
1 http://www.musicnotes.com/, Commerical Sheet Music Archive 
2 Stat. lower/upper bound stands for the bound of interval, which contains 
80 percentile of the total samples 
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Stat. upper bound 0.4092 0.8670
average 0.3681 0.5637

Stat. lower bound 0.1292 0.2087
Inter 
class 

Stat. upper bound 1.1042 1.6324
Table 1. Dissimilarity between music with various keys 

From Table 1 it is seen that average SKL Divergence for 
inter-class samples (0.36) and parallel-class samples (0.27) 
is much higher than that of the intra-class (0.14).  This 
difference can be further demonstrated by Figure 3a, 
which shows the percentage distribution of SKL 
Divergence. It is observed that the total percentage of the 
intra-class distances less than 0.2 is 78%, while 80% of 
inter-class and parallel-class distances are greater than 0.2. 
A similar trend is observed for Euclidian Distance between 
Centre of Effect in Table 1 and Figure 3b. 
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Figure 3. Proportion of dissimilarity metric in various intervals 

These results corroborate significant confidence in 
distinguishing intra-class samples from parallel-class and 
inter-class samples. However, relative-class distances are 
observed to be much more difficult to distinguish as the 
SKL Divergence and Euclidian Distance, are both 
observed to be fairly close to the intra-distance. This can 
be explained by the music theoretic knowledge that 
relative keys share the same scale and similar harmonic 
structure. Thus, chroma features of relative-class pieces 
have similar distribution. In addition, modulations between 
relative modes are common in tonal music, which makes it 
harder to identity whether a song is primarily structured 
around a Major or its Relative Minor key (for example, a 
song with the verse sections in C Major and the Chorus 
sections in A Minor). 

5.2. Clustering performance evaluation 

The accuracy of clustering results is evaluated via cluster 
purity and Rand Index. Figure 4 reveals cluster purity and 
Rand Index as well as their correlation with the number of 
clusters. It can be observed that the cluster purity is always 
above 50%. On the other hand, the Rand index is relatively 
stable around 50% and reaches minima of 48% when the 
number of clusters is 21 (the actual number of keys 
occurring in the test dataset as per ground truth). This 
follows the discussion in Section 4.2 that Rand Index will 
reach its minimal value, when the number of cluster is 
equal to the actual number of keys occurring in the data. 

0

10

20

30

40

50

60

70

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

number of cluster
pe

rc
en

ta
ge

Purity RI

 
Figure 4. Clustering accuracy evaluation 

The number of clusters predicted by our system for the test 
dataset is observed to be 24 based on a minimum of 
estimated Rand Index(computed by Equation 8), while the 
cluster purity is observed to be 57.2%. It can be seen that 
this is fairly close to the actual number of clusters - 21. 

On further analysis of the clustering result, we find that 
quite a few errors are caused because of the Major/ 
Relative Minor ambiguity. A straightforward approach to 
reduce the confusion here would be to merge such keys 
into key groups[12], which implies that the signature for 
each cluster is a combination of 2 keys - the Major and its 
Relative Minor. In our experiments, the cluster purity has 
been observed to be as high as 70% with this change. 
Furthermore, errors are also caused because the algorithm 
is sometimes unable to distinguish the tonic from the 
dominant (perfect fifth interval). The overlap of harmonic 
components makes it difficult to identify the chroma 
component the harmonic belongs to. Besides, perfect fifth 
is a basic element when construction of triads is concerned 
in harmony. Similar errors were also observed in [3,12]. 

6. CONCLUSION

In this paper, a framework has been presented to cluster a 
higher level feature of music, the key, in an unsupervised 
way, discarding prior training information and music 
theoretic based rules. To the best of our knowledge this is 
the first attempt in this direction and hence there is no 
strong basis for evaluation against existing techniques. An 
empirical evaluation shows that accuracy of the existing 
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rule-based key estimation approach[16] suffers a decrease 
from over 80% to around 60% as the dataset has been 
scaled from 30 to 91 songs. From the discussion above, it 
is observed that the clustering performance is still stable as 
the data set grows because the dependency on specific 
higher level musical knowledge is not present. This gives 
us sufficient confidence that clustering, if involved as a 
preprocessing component in key detection tasks, will 
contribute in improving the accuracy for key estimation in 
large music databases. Future work will focus on 
integrating the clustering framework with key detection 
techniques to evaluate performance and scalability. 
Although the clustering framework is not yet sufficient to 
output the actual key assignment for each music recording 
or cluster, we believe it could provide useful information 
for further structure analysis of musical work, in addition 
to music retrieval & recommendation systems, and 
emotion recognition systems. 
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