
ISMIR 2008 – Session 1b – Melody

SPEEDING MELODY SEARCH WITH VANTAGE POINT
TREES

 Michael Skalak, Jinyu Han, Bryan Pardo
 Electrical Engineering and Computer Science

Ford Engineering Design Center, Room 3-323
Northwestern University

2133 Sheridan Road, Evanston, IL, USA 60208
847.491.7184

mskalak13@gmail.com, jinyuhan@gmail.com, pardo@northwestern.edu

ABSTRACT

Melodic search engines let people find music in online
collections by specifying the desired melody. Comparing
the query melody to every item in a large database is
prohibitively slow. If melodies can be placed in a metric
space, search can be sped by comparing the query to a
limited number of vantage melodies, rather than the entire
database. We describe a simple melody metric that is
customizable using a small number of example queries.
This metric allows use of a generalized vantage point tree
to organize the database. We show on a standard melodic
database that the general vantage tree approach achieves
superior search results for query-by-humming compared
to an existing vantage point tree method. We then show
this method can be used as a preprocessor to speed search
for non-metric melodic comparison.

1. INTRODUCTION

Music is a popular category of online multimedia.
Example collections include the millions of recordings in
iTunes, emusic, and amazon.com. New melodic search
engines let one search a music collection by specifying the
desired melody. Typically, the query is entered by
singing, playing a virtual piano keyboard or entering a
symbolic representation, such as notes on a music staff.
For an overview of recent approaches to melodic search,
see [1, 2] or the results of the MIREX competitions [3].

Currently deployed systems compare the query melody
to each melodic search key in the database. While this
works for small collections, direct comparison to every
database element becomes prohibitively slow as the size
of the collection increases. Placing database melodies in a
metric space lets one leverage a large body of research on
efficiently finding objects [4].

Given a metric for melodies, we can pre-compute the
distance of each melody in the database to a small set of
melodies taken from the database, called vantage points.
By comparing the query’s distance to the vantage points
with those of the database melodies, many melodies can

be removed from consideration without need for direct
comparison to the query, speeding search.

Recently, several authors [5-7] have organized melodic
databases with vantage points and a metric. Typke et al
[6] made an excellent first step, encoding melodies as a
piecewise constant functions on the pitches of the
chromatic scale and then applying a variant of Earth
Mover Distance (EMD) [8]. EMD forms a pseudometric
(non-identical elements may have a distance of 0). Their
work did not, however, use a true metric, nor did it focus
on learning to optimize the metric from real query data.
They also did not explore the potential benefits of
organizing vantage points in a structure.

Parker et al. [5] approximated an edit-distance-based
metric for melodies based on a data set. They used a
recursively organized structure, called a vantage point
tree [4, 9], to prune the search space. Their system
showed good results, but they did not learn a true metric,
potentially compromising effectiveness. As with Typke et
al., their pitch quanta are the notes on the chromatic scale.
Such quantization can introduce error when used with
pitch-tracker output from audio recordings (like sung
queries) [10]. Also, they only tested a single tree structure,
leaving open the possibility that other tree structures could
improve performance.

 This paper describes an un-quantized melodic
encoding (Section 2) and a simple metric for melodic
comparison (Section 3). We use this metric to organize a
melodic database with a more general vantage point tree
architecture than previous work has used (Section 4). The
simplicity of the metric lets us tune its parameters (Section
6) from a small set of sung queries (Section 7). We
explore the space of vantage point trees to find
architectures that greatly improve search speed while
sacrificing little in terms of search quality (Section 8). We
then show a vantage point tree can be an effective
preprocessor to speed search for a non-metric melodic
comparison approach (Sections 5 and 9).

95

ISMIR 2008 – Session 1b – Melody

2. MELODIC ENCODING

In a typical melodic search system, the query is
provided to the computer quantized to some musical
alphabet (e.g. the note staff entry at http://musipedia.org)
or as a sung example (http://midomi.com). In the case of a
sung example, the melody is typically transcribed into a
time-frequency representation where the fundamental
frequency and amplitude of the audio is estimated at short
fixed intervals (on the order of 10 milliseconds).

Our system accepts both music-staff entry and sung
queries, so we use a representation scheme that is useful
for both these cases. We encode all queries and all
melodies in the database as sequences (strings) of note
intervals. Each note interval is represented by a pair of
values: the pitch interval (PI) between adjacent notes
(measured in units of musical half-steps) and the log of
the ratio between the length of a note and the length of the
following note (LIR) [11] (where note lengths are inter-
onset-intervals). We use note intervals because they are
transposition invariant (melodies that differ only in key
appear the same) and tempo invariant (melodies that differ
only in tempo appear the same).

Figure 1. Encoding of a sung query

Figure 1 shows a transcription of a sung query by our
system. Dots show the initial transcription. Horizontal
lines show notes derived from the transcription. The
rounded rectangle surrounding two notes indicates a
single note interval derived from those two notes.

3. THE METRIC

A metric is a function d(x,y) that defines the distance
between elements x and y of a set. A metric must satisfy
the following conditions: (,) 0d x y (non negativity);

(,) 0 iff d x y x y ; (,) (,)d x y d y x (symmetry); and
(,) (,) (,)d x y d y z d x z (triangle inequality).
While there are any number of functions that satisfy the

requirements of a metric, most are unsuitable for
meaningful melodic comparison. Since our focus is on
speeding melodic search, a good metric for melodies must

be quick to calculate and one where d(X,Y) is small when
a person would say melodies X and Y are similar and
d(X,Y) is large when a person would call X and Y
dissimilar. We now describe a simple metric that has
proven effective for melodic comparison.

We represent a melody X as a string of note intervals.
We denote note intervals as lower case letters. Equation 1
defines a simple metric between note intervals x and y,
with pitch intervals xp and yp and LIRs xl and yl.

(,) l l p pd x y a x y b x y (1)

Here, a and b are non-negative values chosen to
optimize performance on a set of example queries for a
given database. This simple approach, when paired with
the differential melodic encoding described in Section 2
(this encoding is crucial to the use of such a simple note
metric), has been shown to produce comparable search
performance to more complex distance measures, without
the need to optimize large numbers of parameters [2].

The proof that this is a metric is straightforward: the
absolute difference between two values is a metric. So is
the weighted sum of two metrics. Thus, our distance
measure is a metric on note intervals. Note this metric
does not force quantization of the note values to a finite
alphabet. Such quantization has been shown to introduce
errors in melodic search using sung queries [10].

The distance between the query and each database
element determines its ranking in search results. Of
course, when searching in a melodic database, one is not
comparing individual note intervals, but full melodies. To
compare melodic strings, we use global edit distance. The
edit distance between two strings is the cost of the least
expensive way of transforming one string into the other.
Here, transformation cost depends on a comparison
function for the individual string elements. We have a
fixed insertion/deletion cost of one, effectively forcing the
other parameters to be in these units. If the comparison
function for string elements is a metric (like Equation 1)
then edit distance is also a metric. For a more in depth
description and proof, see [12, 13].

4. VANTAGE POINT TREES

We now give an overview of the vantage point tree
algorithm [9] for speeding search. We organize a database
by choosing v elements at random from the database.
These elements are the vantage points. Each element in
the database has its distance measured to each vantage
point using a metric. Around each vantage point, we
partition the space into r concentric rings. We choose the
size of these rings so that each contains nearly equal
numbers of elements.

Given v vantage points with r rings per vantage point,
this divides the metric space into rv regions of intersection
between rings, called branches. Each branch can be

0 1 2 3 4
46 A#

48 C

50 D

52 E

54 F#

56 G#

58 A# M
ID

I P
ITC

H
 (m

usical half steps)

TIME (seconds)

One Note Interval
Pitch Interval = +2.1 half steps
Log of Rhythm Ratio = log2(0.3/0.9)

131 Hz

FR
EQ

U
EN

C
Y

116 Hz

147 Hz

165 Hz

185 Hz

208 Hz

233 Hz

0 1 2 3 4
46 A#

48 C

50 D

52 E

54 F#

56 G#

58 A# M
ID

I P
ITC

H
 (m

usical half steps)

TIME (seconds)

One Note Interval
Pitch Interval = +2.1 half steps
Log of Rhythm Ratio = log2(0.3/0.9)

131 Hz

FR
EQ

U
EN

C
Y

116 Hz

147 Hz

165 Hz

185 Hz

208 Hz

233 Hz

96

ISMIR 2008 – Session 1b – Melody

uniquely identified by a v-tuple where the ith element
specifies the ring for the ith vantage point. This tuple is
the branchID. All database elements in the same branch
are assigned the same branchID. BranchID values for
database elements are computed prior to search.

Figure 2. One level of a vantage point tree

Figure 2 shows one level of a vantage point tree with
two vantage points and two rings per vantage points.
Points in the graph indicate database elements (i.e.
melodies). Each vantage point in this example has only
two rings: a close inner region and a far outer region. This
splits the space into four branches. In Figure 2, each
branch ID is a binary duple.

To search the database, we find all branches that
intersect the spherical region within an empirically-
determined error margin around the query. This set of
branches contains the only points we need to consider
when searching the database. In Figure 2, this eliminates
all melodies in branch (0,1) and (0,0), leaving the
melodies in branches (1,0) and (1,1) as possible matches.

The error margin around the query represents our
uncertainty about how well the metric corresponds to the
choices a human would make in selecting the most similar
melody. We are guaranteed to find all targets that are
within the error margin of the query. However, the
smaller the error margin, the fewer branches fall within it,
speeding search. The larger the error margin, the less
likely we are to accidentally remove the correct target
from consideration.

Even a single-layer tree can eliminate a large number
of database elements from consideration. The true power
of this approach, however, lies in creating levels. Within
any branch at level l, one can partition the space again by
selecting vantage points within that branch and creating a
set of branches at level l+1. This recursive structure is
called a vantage point tree. We apply the algorithm at
each level, until a maximum depth is reached or the leaves
are too small to split further. At this depth, the remaining
database elements are directly compared to the query to
find the best match. The cost of searching the tree is
negligible other than the comparisons to the vantage
points; at worst, it requires a number of hash table
lookups equal to the non-eliminated branches at each
level. Given a poor metric (no branches are eliminated at

any level) worst case performance is O(n). Typical
performance is O(logB(n)). Log base B depends on the
metric and tree structure. Different structures can have
similar search quality, while varying in speed by an order
of magnitude. This is shown in Section 8.

The vantage point tree used by Parker et al [5] is a
special case with one vantage point per level (v=1) and
two rings per vantage point (r=2). Similarly, the structure
used by Typke et al [6, 7] can be realized with setting of v
to the desired number of vantage points, r equal to the
number of elements in the database, and only a single
level (maximal tree depth d=1). Setting v=1, r=1 and d= 1
results in only one ring and all melodies must be directly
compared to the query. This is linear search.

5. VANTAGE POINT TREE AS PREPROCESSOR

The metric in Section 3 is based on edit distance.
Recent MIREX competitions show that recursive
alignment (RA) generates a higher MRR than does the
string-edit approach we can prove is a metric [14].
Unfortunately, RA is not a metric. Thus, we cannot
directly apply vantage point trees to recursive alignment.
We can, however, still use a vantage point tree
preprocessor to speed search for a non-metric.

Let distance measure M(a,b) be a metric. Let H(a,b) be
a slow non-metric we assume is ground-truth. If M and H
agree within error bound e, we can build a vantage point
tree with M and search with an error radius based on e.
This precludes false negatives due to differences between
M and H. The remaining database elements can be sorted
using H. This lets us speed search by preprocessing with a
vantage point tree built with M. We can progressively
shrink the error bound to further speed search at the cost
of increasing numbers of false negatives.

If we could find a vantage point tree able to put most
queries in the same branches as their targets, it could be a
useful preprocessor for any melodic search engine.
Because each branch contains only a small portion of the
database, the preprocessing could greatly speed up search,
while still giving a high probability that the targets are
within the search scope. Section 9 describes an
experiment to find a good vantage point tree for this
purpose.

6. DATA SET

Although there is nothing inherent in our approach that
requires sung queries, we focus our experiments on the
query-by-humming melodic search case, where queries
are audio recordings of people humming or signing
melodies. Our query set was drawn from the QBSH
corpus [15] used in the 2006 MIREX comparison of
query-by-humming melodic search systems [3]. We used
15 singers, each singing the same 15 songs from this
dataset for a total of 225 queries. Our melody database

Vantage
Point 1

(0,1) Query

Target

Vantage
Point 2

(1,1)

(1,0)
(0,0)

BranchID Error
margin

Vantage
Point 1

(0,1) Query

Target

Vantage
Point 2

(1,1)

(1,0)
(0,0)

BranchID Error
margin

97

ISMIR 2008 – Session 1b – Melody

contained 2348 folk melodies from the Essen database
(http://www.esac-data.org/) plus the 15 target melodies
corresponding to the sung melodies in the query set, for a
total of 2363 melodies. This database was chosen to
emulate the database used in the 2006 MIREX
competition.

The median melody length was 40 notes. Melodies
were split into 10 note-interval subsequences with 3 note-
intervals between the start of each subsequence and the
search rank of the best subsequence was used as the rank
of the melody. Melodies were broken into 11
subsequences, on average, resulting in 34,000 total
database elements. While this is small compared to the
millions of songs available in iTunes, the dataset used is a
standard one used in the music search community.
Copyright issues and the need to hand-vet melodies have
limited the size of data sets used by this community.

7. TUNING THE METRIC

The metric from Section 3 may be tuned to favor pitch or
rhythm similarity. Given the small number of parameters
to be tuned, the model may be tuned using a relatively
small set of examples. We learned parameters for a note
segmenting preprocessor [10] and the note interval metric
from Equation 1 using a simple genetic algorithm (GA)
[16]. For tuning the metric, we selected five singers and
used five of their songs for a total of 25 queries in our
training set. Our testing set consisted of all 15 songs from
each of the remaining 10 singers (150 queries). The GA
used fitness proportional reproduction and single-point
crossover. Each individual in the population was one set
of segmentation and metric parameter values. To test the
fitness of a set of parameter values, we ran a search
engine using those values on the database from Section 6.
Fitness for the GA was determined by MRR (see Section
8) on the training set and final results were validated on
the testing set. Once good values for the metric were
found, these values were used consistently in the
experiments reported in this paper.

8. COMPARING TREES

We are interested in effect of tree architecture on the
performance of a vantage point tree. To explore the space
of the parameters for the vantage point tree, we generated
1736 random four-tuples (v,r,d,e). These represent the
number of vantage points per level (v), rings per vantage
point (r), maximal tree depth (d), and radius of the error
margin around the query (e). Here d ranged from 1 to 20
levels, v ranged from 1 to 10, r ranged from 2 to 50, and e
ranged from 0 to 10.

Trees were evaluated by the performance of a search-
engine in finding correct targets for queries using the
database from section 6. Given a vantage point tree, each

query was processed. Once the final leaf branch was
reached, all database melodies in the leaf were ranked for
similarity to the query using the metric from Section 3. If
the correct target was not in the same leaf as the query, we
treated it as having been ranked 100th.

Call c the rank of the correct target for a query. Here, c
= 1 indicates the correct target was ranked first. The mean
rank for a trial is the average value for c over all queries
in the trial. This measure can be sensitive to poorly
ranking outliers. The mean reciprocal rank (MRR) is less
sensitive to outliers. The reciprocal rank is 1/c. MRR (see
Equation 2) is the mean of the reciprocal rank over all
queries in a trial. Here, Q is the number of queries and N
is the size of the database.

1

1
11 =

Q

q qc
MRR

Q N
 (2)

If the system always ranks a correct answer first, the
MRR will be 1. If the system gives random similarity
values to targets, the MRR will be roughly log(N)/N.
Chance MRR performance on our database is 0.03.

Figure 3. Performance of vantage point trees plus
the metric as a stand-alone melodic search method.

Results for the 1736 vantage point trees are shown in
Figure 3. Each point represents the performance of the
search engine on the dataset from Section 6, given
vantage tree parameter settings (v,r,d,e). Results show
mean values for the 200 query melodies not used in
training the metric. Parameter settings conforming to the
simple vantage point tree method described in Parker et al
[5] (Single Vantage Point Trees) are shown as solid
squares. Trees with more than two rings per vantage point
and/or more than one vantage point per level are shown as
open circles (General Vantage Point Trees). The vertical
dimension shows the proportion of the database compared
directly to the query. Thus, a value of 1% means that 99%
of the database was removed through use of the vantage

Mean Reciprocal Rank (MRR)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

100%

10%

1%

0.1%%
 o

f d
at

ab
as

e
co

m
pa

re
d

di
re

ct
ly

 to
 q

ue
ry

BetterWorse

W
or

se
B

et
te

r

C
ha

nc
e

pe
rfo

rm
an

ce

Mean Reciprocal Rank (MRR)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

100%

10%

1%

0.1%%
 o

f d
at

ab
as

e
co

m
pa

re
d

di
re

ct
ly

 to
 q

ue
ry

BetterWorse

W
or

se
B

et
te

r

Mean Reciprocal Rank (MRR)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

100%

10%

1%

0.1%%
 o

f d
at

ab
as

e
co

m
pa

re
d

di
re

ct
ly

 to
 q

ue
ry

Mean Reciprocal Rank (MRR)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

100%

10%

1%

0.1%%
 o

f d
at

ab
as

e
co

m
pa

re
d

di
re

ct
ly

 to
 q

ue
ry

BetterWorse

W
or

se
B

et
te

r

C
ha

nc
e

pe
rfo

rm
an

ce

98

ISMIR 2008 – Session 1b – Melody

point tree, prior to the direct comparison of the final 1% to
the query.

As Figure 3 shows, for every Single Vantage Point
Tree, there is a General Vantage Point Tree that eliminates
the same proportion of the database, while achieving a
higher MRR. This indicates that using more complex
vantage point tree structures can significantly improve
search performance.

Figure 3 shows a general vantage point tree allows a
string-alignment based method to achieve an MRR of 0.33
by comparing only 10% of the melodies in the database to
the query melody. Full search of the database using the
same method achieves an MRR of 0.346. This is an
advance for edit-distance based search. Other search
methods may also benefit from the metric and vantage
point tree by using it as a front end. We now describe an
experiment that explores this possibility.

9. FINDING A GOOD FRONT-END TREE

When a query is processed with a vantage point tree,
we find which branches intersect the spherical region
described by the error margin around the query. These
branches are then divided into smaller branches at the next
level. The tree is traversed until some depth limit is
reached. At this point, we say the target song is still in our
vantage point tree if at least one subsequence of the target
melody is in one of the non-eliminated branches at the
final level. The melodies in these branches may then be
compared to the query by any desired search method.

By varying the value of error margin around the query
(see Figure 2), we can change the number of the branches
in the tree under consideration. Generally speaking, the
larger the error margin is, the fewer branches will be
eliminated from consideration. We wish to find an error
margin that eliminates the largest portion of the database
without removing the target melody.

To find a good tree architecture as a front-end for
melodic search, we randomly generated 80 vantage point
tree architectures by setting the number of vantage points
and number of rings per point (v, r). For each pair of
parameter settings, we then organized the database from
Section 6 with a vantage point tree, recursively creating
branches until reaching a level where the branches contain
less than 2(v+r) melodies.

We then chose 150 queries and randomly selected 100
queries (the selecting set) from these 150 queries. We
queried each tree with each query in the selecting set and
counted the number times the correct target remained in
the database after applying the vantage point tree. Call
this t. We then calculated the percentage of database left
after applying the tree, p. For each tree, we took the ratio
t/p as a measure of the effectiveness of the tree. We then
ranked the trees by this ratio and took the best one as the
good vantage tree. This “good vantage tree” architecture

was tested using the remaining 50 queries. We repeated
this selecting and testing process three times using 3-fold
cross validation. The best tree architecture from each of
the three trials was Trial1: v=4 ,r=3, Trial2: v=3, r=5,
and Trial3: v=3, r=5.

Figure 4 shows average performance over the three
trials. Open circles with the dashed line show performance
on the testing set. Solid circles with the solid line show
performance on the selecting (training) set. The numeral
by each point indicates the error margin around the query
(see Section 4). The diagonal line shows the effect of
shrinking the database by randomly removing a given
percentage of the elements.

Figure 4. Performance of vantage point trees as a front-
end for a melodic search system.

One may select the appropriate trade-off between
search quality and search speed by choosing the
appropriate error margin. For example, an error margin of
2.4 leaves 90% of the targets in the database, while
eliminating 50% of the other database elements. An error
margin of 1.7 retains 80% of the correct targets, but only
20% of the database, speeding search by a factor of five.

After narrowing the search scope by the vantage point
tree preprocessor, one could use any melodic comparison
approach for the remaining elements. This could make
some time-consuming comparison methods practical in
current computing-limited systems. If the errors made by
the vantage point tree are uncorrelated with errors the
subsequent search method makes, we could even improve
MRR, since the tree could eliminate database elements
that might confuse the other search method.

10. CONCLUSIONS

This paper describes a way to speed melodic database
search. We apply a simple parameterized approach to
building a metric for melodies. This simplicity lets us

melodies remaining in the database

Better Worse

B
et

te
r

W
or

se

0% 20% 40% 60% 80% 100%

100%

80%

60%

40%

20%

0%ta
rg

et
s

re
m

ai
ni

ng
 in

 th
e

da
ta

ba
se

melodies remaining in the database

Better Worse

B
et

te
r

W
or

se

0% 20% 40% 60% 80% 100%

100%

80%

60%

40%

20%

0%ta
rg

et
s

re
m

ai
ni

ng
 in

 th
e

da
ta

ba
se

99

ISMIR 2008 – Session 1b – Melody

learn good metric parameter values from a small set of
queries. We use this metric to organize a database to
speed search, employing a more general vantage-tree
approach than existing work has used. This results in
significantly improved search times while sacrificing very
little search quality. Previous methods used to index a
melodic database with vantage point trees are special
cases in this framework. Any melody metric can be used
with this approach to database organization. For example,
one could choose one metric for skilled musicians and
another for the general public.

One can also use a vantage point tree preprocessor to
speed search for a non-metric. By choosing the correct
parameters for the vantage point tree, one can balance
search speed against the likelihood of eliminating the
correct target from the database.

Optimal tree architecture for a particular application
depends on the metric and the content of the database. In
future work, we will explore the relationships between
tree architecture, metric and dataset to improve our ability
to select the right tree architecture.

11. ACKNOWLEDGEMENTS

This work was funded in part by National Science
Foundation Grant number IIS-0643752.

12. REFERENCES

[1] Typke, R., F. Wiering, and R.C. Veltkamp. A Survey
of Music Information Retrieval Systems. in ISMIR
2005: 6th International Conference on Music
Information Retrieval. 2005. London, England.

[2] Dannenberg, R., W. Birmingham, B. Pardo, N. Hu,
C. Meek, and G. Tzanetakis, A Comparative
Evaluation of Search Techniques for Query-by-
Humming Using the MUSART Testbed. Journal of
the American Society for Information Science and
Technology, 2007: p. 687 - 701.

[3] Downie, J.S., K. West, A. Ehmann, and E. Vincent.
The 2005 music information retrieval evaluation
exchange (MIREX 2005): Preliminary overview. in
Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR). 2005. London,
England.

[4] Chavez, E., G. Navarro, and J.L. Marroquin,
Searching in Metric Spaces. ACM Computing
Surveys, 2001. 33(3): p. 273-321.

[5] Parker, C., A. Fern., and P. Tadepalli. Learning for
Efficient Retrieval of Sturctured Data with Noisy
Queries. in Proceedings of the 24th International
Conference on Machine Learning (ICML). 2007.
Corvalis, Oregon.

[6] Typke, R., R.C. Veltkamp, and F. Wiering.
Searching Notated Polyphonic Music Using
Transportation Distances. in Proceedings of ACM
Multimedia 2004. 2004. New York, NY, USA.

[7] Vleugels, J. and R.C. Veltkamp. Efficient Image
Retrieval through Vantage Objects. in Proceedings of
the Third International Conference on Visual
Information and Information Systems. 1999.

[8] Typke, R., P. Giannopoulos, R.C. Veltkamp, F.
Wiering, and R. van Oostrum. Using transportation
distances for measuring melodic similarity. in ISMIR
2003, 4th International Conference on Music
Information Retrieval. 2003. Balitmore, MD.

[9] Yianilos, P.N. Data Structures and Algorithms for
Nearest-neighbor Search in General Metric Spaces.
in Proceedings of the Fourth annual ACM-SIAM
Symposium on Discrete Algorithms. 1993.

[10] D. Little, D.R., B. Pardo, User specific training of a
music search engine, in Machine Learning and
Multimodal Interaction: Fourth International
Workshop, MLMI 2007, Lecture Notes in Computer
Science. 2007, Springer: Brno, CZ.

[11] Pardo, B. and W.P. Birmingham. Encoding Timing
Information for Musical Query Matching. in ISMIR
2002, 3rd International Conference on Music
Information Retrieval. 2002. Paris, France.

[12] Levenshtein, V.I., Binary Codes Capable of
Correcting Deletions Insertions and Reversals. Soviet
Physics Doklady, 1966. 10(8): p. 707-710.

[13] Wagner, R. and M. Fischer, The string-to-string
correction problem. Journal of the ACM, 1974.
21(1): p. 168-173.

[14] Wu, X., Li, M., Liu, J. , Yang, J. , and Yan, Y. A
Top-down Approach to Melody Match in Pitch
Contour for Query by Humming. in International
Symposium on Chinese Spoken Language
Processing. 2006.

[15] Jyh-Shing and R. Jang, QBSH: A corpus for
designing QBSH (query by singing/humming)
systems. 2006, Available at the
http://www.cs.nthu.edu.tw/˜jang.

[16] Parker, J. Genetic Algorithms for Continuous
Problems. in 15th Conference of the Canadian
Society for Computational Studies of Intelligence on
Advances in Artificial Intelligence. 2002.

100

