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ABSTRACT 

Melodic search engines let people find music in online 
collections by specifying the desired melody. Comparing 
the query melody to every item in a large database is 
prohibitively slow. If melodies can be placed in a metric 
space, search can be sped by comparing the query to a 
limited number of vantage melodies, rather than the entire 
database. We describe a simple melody metric that is 
customizable using a small number of example queries. 
This metric allows use of a generalized vantage point tree 
to organize the database. We show on a standard melodic 
database that the general vantage tree approach achieves 
superior search results for query-by-humming compared 
to an existing vantage point tree method. We then show 
this method can be used as a preprocessor to speed search 
for non-metric melodic comparison.  

1. INTRODUCTION 

Music is a popular category of online multimedia. 
Example collections include the millions of recordings in 
iTunes, emusic, and amazon.com. New melodic search 
engines let one search a music collection by specifying the 
desired melody. Typically, the query is entered by 
singing, playing a virtual piano keyboard or entering a 
symbolic representation, such as notes on a music staff. 
For an overview of recent approaches to melodic search, 
see [1, 2] or the results of the MIREX competitions [3]. 

Currently deployed systems compare the query melody 
to each melodic search key in the database. While this 
works for small collections, direct comparison to every 
database element becomes prohibitively slow as the size 
of the collection increases. Placing database melodies in a 
metric space lets one leverage a large body of research on 
efficiently finding objects [4].  

Given a metric for melodies, we can pre-compute the 
distance of each melody in the database to a small set of 
melodies taken from the database, called vantage points. 
By comparing the query’s distance to the vantage points 
with those of the database melodies, many melodies can 

be removed from consideration without need for direct 
comparison to the query, speeding search.   

Recently, several authors [5-7] have organized melodic 
databases with vantage points and a metric. Typke et al 
[6] made an excellent first step, encoding melodies as a 
piecewise constant functions on the pitches of the 
chromatic scale and then applying a variant of Earth 
Mover Distance (EMD) [8]. EMD forms a pseudometric 
(non-identical elements may have a distance of 0). Their 
work did not, however, use a true metric, nor did it focus 
on learning to optimize the metric from real query data. 
They also did not explore the potential benefits of 
organizing vantage points in a structure.  

Parker et al. [5] approximated an edit-distance-based 
metric for melodies based on a data set. They used a 
recursively organized structure, called a vantage point 
tree [4, 9], to prune the search space. Their system 
showed good results, but they did not learn a true metric, 
potentially compromising effectiveness. As with Typke et 
al., their pitch quanta are the notes on the chromatic scale. 
Such quantization can introduce error when used with 
pitch-tracker output from audio recordings (like sung 
queries) [10]. Also, they only tested a single tree structure, 
leaving open the possibility that other tree structures could 
improve performance. 

 This paper describes an un-quantized melodic 
encoding (Section 2) and a simple metric for melodic 
comparison (Section 3). We use this metric to organize a 
melodic database with a more general vantage point tree 
architecture than previous work has used (Section 4). The 
simplicity of the metric lets us tune its parameters (Section 
6) from a small set of sung queries (Section 7). We 
explore the space of vantage point trees to find 
architectures that greatly improve search speed while 
sacrificing little in terms of search quality (Section 8). We 
then show a vantage point tree can be an effective 
preprocessor to speed search for a non-metric melodic 
comparison approach (Sections 5 and 9). 
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2. MELODIC ENCODING 

In a typical melodic search system, the query is 
provided to the computer quantized to some musical 
alphabet (e.g. the note staff entry at http://musipedia.org) 
or as a sung example (http://midomi.com). In the case of a 
sung example, the melody is typically transcribed into a 
time-frequency representation where the fundamental 
frequency and amplitude of the audio is estimated at short 
fixed intervals (on the order of 10 milliseconds).   

Our system accepts both music-staff entry and sung 
queries, so we use a representation scheme that is useful 
for both these cases. We encode all queries and all 
melodies in the database as sequences (strings) of note 
intervals. Each note interval is represented by a pair of 
values: the pitch interval (PI) between adjacent notes 
(measured in units of musical half-steps) and the log of 
the ratio between the length of a note and the length of the 
following note (LIR) [11] (where note lengths are inter-
onset-intervals). We use note intervals because they are 
transposition invariant (melodies that differ only in key 
appear the same) and tempo invariant (melodies that differ 
only in tempo appear the same).   

 

Figure 1.  Encoding of a sung query 

Figure 1 shows a transcription of a sung query by our 
system. Dots show the initial transcription. Horizontal 
lines show notes derived from the transcription. The 
rounded rectangle surrounding two notes indicates a 
single note interval derived from those two notes. 

3. THE METRIC 

A metric is a function d(x,y) that defines the distance 
between elements x and y of a set. A metric must satisfy 
the following conditions:  ( , ) 0d x y (non negativity); 

( , ) 0 iff d x y x y ; ( , ) ( , )d x y d y x (symmetry); and 
( , ) ( , ) ( , )d x y d y z d x z  (triangle inequality). 
While there are any number of functions that satisfy the 

requirements of a metric, most are unsuitable for 
meaningful melodic comparison. Since our focus is on 
speeding melodic search, a good metric for melodies must 

be quick to calculate and one where d(X,Y) is small when 
a person would say melodies X and Y are similar and 
d(X,Y) is large when a person would call X and Y 
dissimilar. We now describe a simple metric that has 
proven effective for melodic comparison. 

We represent a melody X as a string of note intervals. 
We denote note intervals as lower case letters. Equation 1 
defines a simple metric between note intervals x and y, 
with pitch intervals xp and yp and LIRs xl and yl. 

 
( , ) l l p pd x y a x y b x y        (1) 

Here, a and b are non-negative values chosen to 
optimize performance on a set of example queries for a 
given database. This simple approach, when paired with 
the differential melodic encoding described in Section 2 
(this encoding is crucial to the use of such a simple note 
metric), has been shown to produce comparable search 
performance to more complex distance measures, without 
the need to optimize large numbers of parameters [2].   

The proof that this is a metric is straightforward: the 
absolute difference between two values is a metric. So is 
the weighted sum of two metrics. Thus, our distance 
measure is a metric on note intervals. Note this metric 
does not force quantization of the note values to a finite 
alphabet. Such quantization has been shown to introduce 
errors in melodic search using sung queries [10]. 

The distance between the query and each database 
element determines its ranking in search results. Of 
course, when searching in a melodic database, one is not 
comparing individual note intervals, but full melodies. To 
compare melodic strings, we use global edit distance. The 
edit distance between two strings is the cost of the least 
expensive way of transforming one string into the other. 
Here, transformation cost depends on a comparison 
function for the individual string elements. We have a 
fixed insertion/deletion cost of one, effectively forcing the 
other parameters to be in these units.  If the comparison 
function for string elements is a metric (like Equation 1) 
then edit distance is also a metric.  For a more in depth 
description and proof, see [12, 13].  

4. VANTAGE POINT TREES 

We now give an overview of the vantage point tree 
algorithm [9] for speeding search. We organize a database 
by choosing v elements at random from the database. 
These elements are the vantage points. Each element in 
the database has its distance measured to each vantage 
point using a metric. Around each vantage point, we 
partition the space into r concentric rings. We choose the 
size of these rings so that each contains nearly equal 
numbers of elements.  

Given v vantage points with r rings per vantage point, 
this divides the metric space into rv regions of intersection 
between rings, called branches. Each branch can be 
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uniquely identified by a v-tuple where the ith element 
specifies the ring for the ith vantage point. This tuple is 
the branchID. All database elements in the same branch 
are assigned the same branchID. BranchID values for 
database elements are computed prior to search. 

 

 

Figure 2. One level of a vantage point tree 

Figure 2 shows one level of a vantage point tree with 
two vantage points and two rings per vantage points. 
Points in the graph indicate database elements (i.e. 
melodies). Each vantage point in this example has only 
two rings: a close inner region and a far outer region. This 
splits the space into four branches. In Figure 2, each 
branch ID is a binary duple.  

To search the database, we find all branches that 
intersect the spherical region within an empirically-
determined error margin around the query. This set of 
branches contains the only points we need to consider 
when searching the database. In Figure 2, this eliminates 
all melodies in branch (0,1) and (0,0), leaving the 
melodies in branches (1,0) and (1,1) as possible matches. 

The error margin around the query represents our 
uncertainty about how well the metric corresponds to the 
choices a human would make in selecting the most similar 
melody. We are guaranteed to find all targets that are 
within the error margin of the query.  However, the 
smaller the error margin, the fewer branches fall within it, 
speeding search. The larger the error margin, the less 
likely we are to accidentally remove the correct target 
from consideration.   

Even a single-layer tree can eliminate a large number 
of database elements from consideration. The true power 
of this approach, however, lies in creating levels. Within 
any branch at level l, one can partition the space again by 
selecting vantage points within that branch and creating a 
set of branches at level l+1. This recursive structure is 
called a vantage point tree. We apply the algorithm at 
each level, until a maximum depth is reached or the leaves 
are too small to split further. At this depth, the remaining 
database elements are directly compared to the query to 
find the best match.  The cost of searching the tree is 
negligible other than the comparisons to the vantage 
points; at worst, it requires a number of hash table 
lookups equal to the non-eliminated branches at each 
level. Given a poor metric (no branches are eliminated at 

any level) worst case performance is O(n). Typical 
performance is O(logB(n)). Log base B depends on the 
metric and tree structure. Different structures can have 
similar search quality, while varying in speed by an order 
of magnitude. This is shown in Section 8. 

The vantage point tree used by Parker et al [5] is a 
special case with one vantage point per level (v=1) and 
two rings per vantage point (r=2). Similarly, the structure 
used by Typke et al [6, 7] can be realized with setting of v 
to the desired number of vantage points, r equal to the 
number of elements in the database, and only a single 
level (maximal tree depth  d=1). Setting v=1, r=1 and d= 1 
results in only one ring and all melodies must be directly 
compared to the query.  This is linear search. 

5. VANTAGE POINT TREE AS PREPROCESSOR 

The metric in Section 3 is based on edit distance. 
Recent MIREX competitions show that recursive 
alignment (RA) generates a higher MRR than does the 
string-edit approach we can prove is a metric [14]. 
Unfortunately, RA is not a metric. Thus, we cannot 
directly apply vantage point trees to recursive alignment. 
We can, however, still use a vantage point tree 
preprocessor to speed search for a non-metric. 

Let distance measure M(a,b) be a metric. Let H(a,b) be 
a slow non-metric we assume is ground-truth.  If M and H 
agree within error bound e, we can build a vantage point 
tree with M and search with an error radius based on e. 
This precludes false negatives due to differences between 
M and H.  The remaining database elements can be sorted 
using H. This lets us speed search by preprocessing with a 
vantage point tree built with M. We can progressively 
shrink the error bound to further speed search at the cost 
of increasing numbers of false negatives. 

If we could find a vantage point tree able to put most 
queries in the same branches as their targets, it could be a 
useful preprocessor for any melodic search engine. 
Because each branch contains only a small portion of the 
database, the preprocessing could greatly speed up search, 
while still giving a high probability that the targets are 
within the search scope. Section 9 describes an 
experiment to find a good vantage point tree for this 
purpose. 

6. DATA SET 

Although there is nothing inherent in our approach that 
requires sung queries, we focus our experiments on the 
query-by-humming melodic search case, where queries 
are audio recordings of people humming or signing 
melodies. Our query set was drawn from the QBSH 
corpus [15] used in the 2006 MIREX comparison of 
query-by-humming melodic search systems [3]. We used 
15 singers, each singing the same 15 songs from this 
dataset for a total of 225 queries.  Our melody database 
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contained 2348 folk melodies from the Essen database 
(http://www.esac-data.org/) plus the 15 target melodies 
corresponding to the sung melodies in the query set, for a 
total of 2363 melodies. This database was chosen to 
emulate the database used in the 2006 MIREX 
competition.  

The median melody length was 40 notes. Melodies 
were split into 10 note-interval subsequences with 3 note-
intervals between the start of each subsequence and the 
search rank of the best subsequence was used as the rank 
of the melody. Melodies were broken into 11 
subsequences, on average, resulting in 34,000 total 
database elements. While this is small compared to the 
millions of songs available in iTunes, the dataset used is a 
standard one used in the music search community. 
Copyright issues and the need to hand-vet melodies have 
limited the size of data sets used by this community. 

7. TUNING THE METRIC 

The metric from Section 3 may be tuned to favor pitch or 
rhythm similarity. Given the small number of parameters 
to be tuned, the model may be tuned using a relatively 
small set of examples. We learned  parameters for a note 
segmenting preprocessor [10] and the note interval metric 
from Equation 1 using a simple genetic algorithm (GA) 
[16]. For tuning the metric, we selected five singers and 
used five of their songs for a total of 25 queries in our 
training set. Our testing set consisted of all 15 songs from 
each of the remaining 10 singers (150 queries). The GA 
used fitness proportional reproduction and single-point 
crossover. Each individual in the population was one set 
of segmentation and metric parameter values. To test the 
fitness of a set of parameter values, we ran a search 
engine using those values on the database from Section 6. 
Fitness for the GA was determined by MRR (see Section 
8) on the training set and final results were validated on 
the testing set. Once good values for the metric were 
found, these values were used consistently in the 
experiments reported in this paper. 

8. COMPARING TREES 

We are interested in effect of tree architecture on the 
performance of a vantage point tree. To explore the space 
of the parameters for the vantage point tree, we generated 
1736 random four-tuples (v,r,d,e). These represent the 
number of vantage points per level (v), rings per vantage 
point (r), maximal tree depth (d), and radius of the error 
margin around the query (e). Here d ranged from 1 to 20 
levels, v ranged from 1 to 10, r ranged from 2 to 50, and e 
ranged from 0 to 10. 

Trees were evaluated by the performance of a search-
engine in finding correct targets for queries using the 
database from section 6. Given a vantage point tree, each 

query was processed. Once the final leaf branch was 
reached, all database melodies in the leaf were ranked for 
similarity to the query using the metric from Section 3. If 
the correct target was not in the same leaf as the query, we 
treated it as having been ranked 100th. 

Call c the rank of the correct target for a query. Here, c 
= 1 indicates the correct target was ranked first. The mean 
rank for a trial is the average value for c over all queries 
in the trial. This measure can be sensitive to poorly 
ranking outliers. The mean reciprocal rank (MRR) is less 
sensitive to outliers. The reciprocal rank is 1/c. MRR (see 
Equation 2) is the mean of the reciprocal rank over all 
queries in a trial. Here, Q is the number of queries and N 
is the size of the database.  

1

1
11  = 

Q

q qc
MRR

Q N
 (2) 

If the system always ranks a correct answer first, the 
MRR will be 1. If the system gives random similarity 
values to targets, the MRR will be roughly log(N)/N. 
Chance MRR performance on our database is 0.03.  

  

 

Figure 3. Performance of vantage point trees plus 
the metric as a stand-alone melodic search method. 

Results for the 1736 vantage point trees are shown in 
Figure 3. Each point represents the performance of the 
search engine on the dataset from Section 6, given 
vantage tree parameter settings (v,r,d,e). Results show 
mean values for the 200 query melodies not used in 
training the metric. Parameter settings conforming to the 
simple vantage point tree method described in Parker et al 
[5]  (Single Vantage Point Trees) are shown as solid 
squares. Trees with more than two rings per vantage point 
and/or more than one vantage point per level are shown as 
open circles (General Vantage Point Trees). The vertical 
dimension shows the proportion of the database compared 
directly to the query. Thus, a value of 1% means that 99% 
of the database was removed through use of the vantage 
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point tree, prior to the direct comparison of the final 1% to 
the query.  

As Figure 3 shows, for every Single Vantage Point 
Tree, there is a General Vantage Point Tree that eliminates 
the same proportion of the database, while achieving a 
higher MRR. This indicates that using more complex 
vantage point tree structures can significantly improve 
search performance. 

Figure 3 shows a general vantage point tree allows a 
string-alignment based method to achieve an MRR of 0.33 
by comparing only 10% of the melodies in the database to 
the query melody. Full search of the database using the 
same method achieves an MRR of 0.346. This is an 
advance for edit-distance based search. Other search 
methods may also benefit from the metric and vantage 
point tree by using it as a front end. We now describe an 
experiment that explores this possibility. 

9. FINDING A GOOD FRONT-END TREE 

When a query is processed with a vantage point tree, 
we find which branches intersect the spherical region 
described by the error margin around the query. These 
branches are then divided into smaller branches at the next 
level. The tree is traversed until some depth limit is 
reached. At this point, we say the target song is still in our 
vantage point tree if at least one subsequence of the target 
melody is in one of the non-eliminated branches at the 
final level. The melodies in these branches may then be 
compared to the query by any desired search method. 

By varying the value of error margin around the query 
(see Figure 2), we can change the number of the branches 
in the tree under consideration. Generally speaking, the 
larger the error margin is, the fewer branches will be 
eliminated from consideration. We wish to find an error 
margin that eliminates the largest portion of the database 
without removing the target melody.  

To find a good tree architecture as a front-end for 
melodic search, we randomly generated 80 vantage point 
tree architectures by setting the number of vantage points 
and number of rings per point (v, r). For each pair of 
parameter settings, we then organized the database from 
Section 6 with a vantage point tree, recursively creating 
branches until reaching a level where the branches contain 
less than 2(v+r) melodies. 

We then chose 150 queries and randomly selected 100 
queries (the selecting set) from these 150 queries. We 
queried each tree with each query in the selecting set and 
counted the number times the correct target remained in 
the database after applying the vantage point tree. Call 
this t. We then calculated the percentage of database left 
after applying the tree, p.  For each tree, we took the ratio 
t/p as a measure of the effectiveness of the tree. We then 
ranked the trees by this ratio and took the best one as the 
good vantage tree. This “good vantage tree” architecture 

was tested using the remaining 50 queries. We repeated 
this selecting and testing process three times using 3-fold 
cross validation. The best tree architecture from each of 
the three trials was Trial1: v=4 ,r=3, Trial2: v=3, r=5, 
and Trial3: v=3, r=5.  

Figure 4 shows average performance over the three 
trials. Open circles with the dashed line show performance 
on the testing set. Solid circles with the solid line show 
performance on the selecting (training) set.  The numeral 
by each point indicates the error margin around the query 
(see Section 4). The diagonal line shows the effect of 
shrinking the database by randomly removing a given 
percentage of the elements.  

 
Figure 4. Performance of vantage point trees as a front-
end for a melodic search system. 

One may select the appropriate trade-off between 
search quality and search speed by choosing the 
appropriate error margin. For example, an error margin of 
2.4 leaves 90% of the targets in the database, while 
eliminating 50% of the other database elements. An error 
margin of 1.7 retains 80% of the correct targets, but only 
20% of the database, speeding search by a factor of five.  

After narrowing the search scope by the vantage point 
tree preprocessor, one could use any melodic comparison 
approach for the remaining elements. This could make 
some time-consuming comparison methods practical in 
current computing-limited systems. If the errors made by 
the vantage point tree are uncorrelated with errors the 
subsequent search method makes, we could even improve 
MRR, since the tree could eliminate database elements 
that might confuse the other search method.  

10. CONCLUSIONS  

This paper describes a way to speed melodic database 
search. We apply a simple parameterized approach to 
building a metric for melodies. This simplicity lets us 
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learn good metric parameter values from a small set of 
queries. We use this metric to organize a database to 
speed search, employing a more general vantage-tree 
approach than existing work has used. This results in 
significantly improved search times while sacrificing very 
little search quality. Previous methods used to index a 
melodic database with vantage point trees are special 
cases in this framework. Any melody metric can be used 
with this approach to database organization. For example, 
one could choose one metric for skilled musicians and 
another for the general public.  

One can also use a vantage point tree preprocessor to 
speed search for a non-metric. By choosing the correct 
parameters for the vantage point tree, one can balance 
search speed against the likelihood of eliminating the 
correct target from the database.  

Optimal tree architecture for a particular application 
depends on the metric and the content of the database. In 
future work, we will explore the relationships between 
tree architecture, metric and dataset to improve our ability 
to select the right tree architecture.  
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