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ABSTRACT 

This paper presents analyses of the 2006 and 2007 
results of the Music Information Retrieval Evaluation
eXchange (MIREX) Audio Cover Song Identification
(ACS) tasks. The Music Information Retrieval Evaluation 
eXchange (MIREX) is a community-based endeavor to 
scientifically evaluate music information retrieval (MIR) 
algorithms and techniques. The ACS task was created to 
motivate MIR researchers to expand their notions of 
similarity beyond acoustic similarity to include the 
important idea that musical works retain their identity 
notwithstanding variations in style, genre, orchestration,
rhythm or melodic ornamentation, etc. A series of 
statistical analyses were performed that indicate 
significant improvements in this domain have been made 
over the course of 2006-2007. Post-hoc analyses reveal 
distinct differences between individual systems and the 
effects of certain classes of queries on performance. This 
paper discusses some of the techniques that show promise 
in this research domain 

1. INTRODUCTION 

Founded in 2005, the annual Music Information Retrieval 
Evaluation eXchange (MIREX) is a community-based 
endeavor to scientifically evaluate music information
retrieval (MIR) algorithms and techniques. Since its 
inception, over 300 music information retrieval (MIR) 
algorithms have been evaluated across 19 distinct tasks. 
These tasks were defined by community input and range 
from such low-level tasks such as Audio Onset Detection
to higher-level tasks as Audio Music Similarity and 
Retrieval. More information about MIREX can be found 
at the MIREX wiki [8] where task descriptions and results 
are archived. This paper focuses on one specific task, 
namely Audio Cover Song Identification (ACS), which 
was first run in 2006 and repeated in 2007. 

This paper is organized as follows: In Section 1.1, we 
discuss the motivation for conducting an ACS task. In 
Section 2, we introduce the task design and its evaluation 
dataset and the evaluation metrics used. In Section 3 we 
compare the results of the ACS 2006 and 2007 tasks. In 
Section 4, we focus on the ACS 2007 results and perform 
a set of statistical significance tests to investigate 
differences in system performance and the effects of the 

data on these performances. Section 5 summarizes what 
has been learned from the examining the different 
approaches to cover song identification. Section 6 
contains the conclusion and future work. 

1.1. Motivation 

Aucouturier and Pachet’s [1] seminal 2004 study 
identified the limitations of using audio-based timbral 
features to perform music similarity tasks. They 
performed more than one hundred machine learning 
experiments using spectral features and could only 
improve the performance 15% over a baseline. They 
called this problem the “glass ceiling”. Whitman, et al. 
[11] investigated the “album effect”, where they saw that 
the performances of artist identification systems were 
inflated by machine learning algorithms picking up on 
similarities in the production qualities of albums. The 
album effect has also been investigated by Kim, et al. [6].  
Pampalk, et al. [9] addressed similar effects, where they 
evaluated genre classification systems on artist-filtered 
datasets and noted a marked reduction in performance. 

The glass-ceiling, album and artist-filtering effects can 
also be seen throughout the MIREX 2005-2007 results. 
For example, comparing the best results for the Audio 
Genre Classification task of MIREX 2005, 82.34% 
(Bergstra, Casagrande and Eck), with the MIREX 2007 
results, 68.29% (IMIRSEL (SVM)) [8]  we see an 
apparent reduction in system performance across the two 
years. Similarly, the top Audio Artist Classification results 
for 2005, 72.45% (Mandel and Ellis) and 2007 48.14% 
(IMIRSEL (SVM)) also exhibit a seemingly large decline 
in performance. These performance drops can be partially 
explained by the fact that in 2005 there was no artist or 
album filtering of the test and training sets used these 
evaluations. In the 2007 Audio Genre Classification task, 
the data was filtered such that no track from the same 
artist could simultaneously exist in both the test and train 
sets in any cross-validation fold. Also, in the 2007 Audio 
Artist Identification task, the test collections did not 
include any track from the same album in test and training 
sets of any cross-validation folds. 

The issues of an apparent glass ceiling, in conjunction
with the absence of artist and album filtering in early MIR 
system evaluations overstating performance effectiveness, 
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indicated a need for the development and evaluation of 
methods using higher-order music descriptors in MIR 
similarity tasks. The ACS task was created to motivate 
MIR researchers to expand their notions of similarity 
beyond acoustic similarity to include the important idea 
that musical works retain their identity notwithstanding 
variations in style, genre, orchestration, rhythm or melodic 
ornamentation, etc. Because cover songs are known to 
span a range of styles, genres, and instrumentations, yet 
are often, in some sense, undeniably “similar,” the 
evaluation of cover song identification performance can 
address the distinction between timbral similarity and 
“musical similarity”. While identifying cover songs 
represents only a narrow scope of possible applications in 
regard to the use of higher-level features in MIR systems,
it is an effective starting point in evaluating the usefulness 
of currently proposed “high-level musical descriptors”,
like those being investigated in  [5][7]. 

2. ACS TASK DESCRIPTION 

2.1. Evaluation Dataset 

The ACS task dataset consists of 1000 tracks. Thirty 
different “cover song” groups each having 11 different 
versions for a total of 330 tracks are embedded within the 
ACS database. The original works in the cover song 
collection come from a variety of genres such as pop, 
rock, classical, baroque, folk, jazz, etc. Furthermore, 
within each group, the versions of each work similarly 
span a wide range of genres with different styles and 
orchestrations.  The total length of the 330 cover songs is 
21.2 hours with an average track length of 232 seconds (σ
= 77 sec.). The remaining 670 tracks in the database are 
“noise”. The noise tracks were chosen to be unrelated to 
any of the cover songs and their performing artists. The 
noise set also reflects a broad variety of genres and styles.
The total length of the noise set is 45.8 hours with an 
average track length of 241 seconds (σ = 82 sec.). Thus 
the total length of the ACS dataset is 67 hours with an 
average track length of 242 seconds (σ = 72 sec.). Unlike 
many other MIREX tasks where 30 second clips were 
commonly used, the ACS task employed whole tracks to 
allow participants the opportunity to exploit the 
potentially important musical structure of the pieces. 

All tracks in the dataset were encoded as 128 kbps
MP3s and then decoded back to 22.05 kHz 16-bit WAV 
files using the LAME codec. Since the cover songs came 
from variety of sources with different encoding 
parameters, the MP3 encoding/decoding step was 
necessary to normalize the dataset to minimize the 
influence of coding effects on system performance. 

2.2.  Evaluation Methods and Metrics 

The goal of the ACS task is to use each cover song track 
as a "seed/query" for identifying the 10 other versions of 

that piece in the dataset. All tracks in each cover song 
group are used as queries for a total of 330 queries. Since 
the underlying work of each individual cover song in a 
cover song group is known, the ground-truth for the ACS 
task is unambiguous and non-subjective. This 
distinguishes the ACS task from such other music 
similarity tasks as Audio Music Similarity, Audio Genre 
Classification, Audio Mood Classification, etc., which 
require the application of potentially subjective human 
judgments. The same dataset was used for both ACS 2006 
and 2007. The identities of the pieces in the dataset have 
never been released to preclude the possibility of the a

priori tuning of the submitted systems. 
In ACS 2006, the overall evaluations were based on 

average performance and mean reciprocal rank (MRR).
Average performance was defined as the mean number of 
covers identified within the top 10 returned items by the 
system. Rescaling the average performance score to the 
range of [0, 1] yields the precision at 10 (P@10) value for 
that system. Reciprocal rank was calculated as 1 over the 
rank of the first correctly identified cover song. In 2006 
the systems only returned their top 10 candidates. 

In ACS 2007, the participants introduced a new 
evaluation metric: mean average precision (MAP). For 
each query, average precision is calculated from the full 
returned list (i.e., 999 returned songs) as the average of 
precisions when the ranked list is cut off at each true item: 

         (1) 

where p(r)  is precision at rank r

         (2) 

and I(j)  is a binary indicator function which is 1 if the jth

returned item in the list is a cover song, and 0 otherwise. 
The MAP is calculated as the mean of average precisions 
across all 330 queries. MAP is a commonly used metric in 
the text information retrieval domain [3]. Using MAP has 
the advantage of taking into account the whole returned 
list where correct items ranked closer to rank 1 receive the 
largest weights. 

3. COMPARISON OF 2006-2007 RESULTS 

Eight systems participated in ACS 2006 resulting in a
task-wide P@10 of 0.08 (σ = 0.067), and a task-wide 
MRR of 0.19 (σ = 0.13). Table 1 (see Appendix A for 
legend) shows the P@10 values for each system. It is 
quite important to note that the systems labeled with ‘*’
were not specifically designed for the ACS task. These 
systems, which were originally designed to participate in 
the Audio Music Similarity task, were graciously 
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volunteered to help the ACS organizers to determine 
whether standard music similarity algorithms would be 
adequate for the ACS task. Similarly, the task organizers 
included the IM system in the 2007 evaluations. The 
average P@10 of the top 4 (task-specific) systems in ACS 
2006 was 0.13 (σ = 0.073). The average MRR of these 4 
system was 0.28 (σ = 0.14).  

Eight systems participated in ACS 2007 resulting in a
task-wide MAP of 0.2062 (σ = 0.1674).  The task-wide 
P@10 for ACS 2007 was 0.2057 (σ = 0.1675). The task-
wide MRR was 0.38 (σ = 0.27). The average P@10 scores 
for the top 4 systems in 2007 were 0.34 with a standard 
deviation of 0.12. 

Table 1 shows the P@10 values of the systems for both 
years. We can see a substantial improvement in ACS 2007 
over 2006. The top 4 systems scores in 2007 are the same 
or better than the best score of 2006. After confirming that 
the top 4 mean P@10 values for both 2006 and 2007 are 
normally distributed using the Jarque-Bera (J-B) test  [2]
(p < 0.05), we ran a one-way ANOVA on the top 4 
systems from each year to see if there is a statistically 
significant difference in performance between the years. 
The ANOVA indicated a significant difference between 
the P@10 means with F(1,6) = 9.18, p = 0.023. This result 
highlights that there has been a ~270% improvement of 
the top performing ACS systems in one year.  

2006 2007
DE 0.23 SG 0.50
KL1 0.11 EC 0.37
KL2 0.10 JB 0.26
CS 0.06 JEC 0.23
LR* 0.05 KL1 0.13
KWL* 0.04 KL2 0.09
TP* 0.04 KP 0.06
KWT* 0.03 IM** 0.01

Table 1. Precision at 10 for ACS 2006 – 2007 results 

It is also important to look at the non-task-specific 
systems. For example, the IM system which had the 
lowest score of all systems over both years was based on 
the same naïvely constructed spectral feature set (i.e., 
MFCC’s, zero-crossing rates, spectral flux, spectral 
centroid, etc.) as the IM-SVM system that ranked amongst 
the top systems for the Audio Artist Identification, Audio 
Genre Classification and Audio Classical Composer 
Identification tasks in MIREX 2007. The weak 
performance of the non-task-specific systems strongly 
suggests that to capture the identity aspects of “music 
similarity,” one should go beyond simple spectral features. 
Top-performing systems in ACS 2007 used higher-level 
features (e.g., rhythm, tonality, tonal sequences, etc.) so as 
to capture the musically important structures. 

4. ANALYSIS OF 2007 RESULTS 

In this section we will focus exclusively on the ACS 2007 
results since the overall performance of the 2007 systems 
is significantly better than the 2006 group. Furthermore, in 
2007 all but one system (i.e., IM) were specifically 
designed for the ACS task. 

4.1. Descriptive Analyses of ACS 2007 Results 
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Figure 1. Precision-Recall curves for ACS 2007 

The precision-recall graph in Figure 1 was generated by 
calculating the precision values at each recall level from 
0.1 to 1 and averaging across all 330 queries for each 
system. Looking at the graph, we can see that SG and EC 
retrieved substantial numbers of relevant cover songs in 
early portions of their results list. In fact SG had 26 
queries with perfect precision at recall equal to 1. SG had 
a further 10 queries where the entire relevant set was 
returned within the first 11 items. EC had 12 queries 
where 9 out of the 10 relevant cover songs were returned 
in the first 10 items. These results are quite remarkable  
because, given our dataset size (1000) and the number of 
relevant items per query (10), the probability of randomly 
returning the entire relevant set within the top 10 list once 

in 330 queries is only 211026.1 !  Also noteworthy, is 
the extraordinarily flat performance curve of the IM 
system. 

Figure 2 shows the box-whisker plot of the distributions 
of MAP values for each system across the 30 cover song 
groups. The bottom, middle and top of each box represent 
the lower quartile, median and upper quartile values, 
respectively. The ‘+’s are the outliers for each 
distribution. The data were amalgamated with respect to 
their cover song groups because ACS task is primarily 
interested in system performance with regard to the 
identification of the 30 underlying works rather than the 
330 individual pieces. Thus, a MAP score was calculated 
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for each cover song group as the mean of the average 
precision values for each group’s 11 members.  

In Figure 2, we see that there is a fair amount of 
variance across query groups with respect to system 
performance. This is especially noticeable in the top 4 
performing systems (i.e., JB, JEC, EC, SG). This suggests 
that some query groups might have significant effects 
(positive or negative) on system performance. 
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Figure 2. Box whisker plot of MAP distributions for 
each system across cover groups (query groups). 

4.2. Inferential Significance Testing  

In this section, we analyze the results in several different 
perspectives. We are interested in determining the answers 
to the following questions: 

1. a) Is there any significant difference in 
performance means among the systems? and, b) 
If such differences exist, between which systems 
do they occur?  

2. a) Is there any significance difference among 
performance means in query groups? and, b) If 
such differences exist, between which query 
groups do they occur? 

Following the procedures outlined in [3], we 
determined whether the by-query-group MAP data 
discussed above were normally distributed across query 
groups using the J-B test. Most of those data did not 
conform to the normal distribution. However, after 
applying the arcsine square-root transformation: 

    
                      (3) 

as recommended by [10], 7 out of 8 systems across query 
groups, and 28 out of 30 query groups across systems 
passed the J-B test (p < 0.05). Since the dataset is 
approximately normally distributed using arcsine square-
root transformation, we selected a parametric test to 
investigate whether there are any significance differences 
among systems or query groups. Parametric tests are 
preferred, where appropriate, because they are more 

powerful than their non-parametric counterparts: they 
better detect differences that might be overlooked (i.e., 
they have lower Type II error rates).  

A two-way ANOVA was chosen because it can provide 
answers to both of our system (Q.1) and our query group 
(Q.2) questions simultaneously. Table 2 shows the results 
of the two-way ANOVA on the transformed data. As one 
can see, there are significant differences among both 
systems and query groups.  

Table 2. Two-way ANOVA table 

To further investigate the differences between 
individual system performance means (Q.1b), we
performed the Tukey-Kramer Honestly Significantly 
Different (TK-HSD) analysis on the system data. TK-
HSD was used because it can properly control the 
experiment-wise Type-I error rate unlike the commonly 
misused multiple t-tests [10]. Figure 3 shows the results of 
the TK-HSD on the transformed by-query-group MAP 
data for each system. The circled items refer to individual 
groupings based on the absence of significant differences 
within the grouping. The answer to Q.1b can be seen in 
Figure 3.  It is evident that the SG system is significantly 
better than the other systems in this task. Also EC, JB and 
JEC have formed their own grouping. It is important to 
note that these results differ from those presented ACS 
2007 results wiki [8] where the non-parametric
Friedman’s test was performed on the non-transformed 
data. The lower power of the Friedman’s test appears to 
have missed the significantly better performance of the 
SG system.  

Figure 3. TK-HSD analysis on system effects based on 
the transformed by-query-group MAP data.  

Source Sum Sq. D.F. Mean Sq. F-stat P
Systems 10.51 7 1.50 54.64 0.00
Query
Groups 6.53 29 0.23 8.20 0.00
Error 5.58 203 0.027
Total 22.62 239
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To answer Q.2b, We ran the TK-HSD test to determine 
where differences in performance occur with regard to the 
query groups. Table 3 displays the results. The first 
column represents the anonymized IDs of the query 
groups which are rank ordered with respect to the by-
query-group MAP across the systems. The second column 
presents the by-query-group MAP. The shaded regions 
indicate sets of query groups which are not significantly 
different in how the algorithms performed. For example, 
the first column indicates that query groups 1 through 10 
are not significantly different from one another. 

Group 
no.

Avg.
MAP

1 0.52
2 0.42
3 0.41
4 0.35
5 0.35
6 0.34
7 0.33
8 0.30
9 0.29

10 0.28
11 0.27
12 0.24
13 0.24
14 0.20
15 0.18
16 0.16
17 0.16
18 0.16
19 0.13
20 0.12
21 0.10
22 0.10
23 0.08
24 0.08
25 0.08
26 0.08
27 0.06
28 0.05
29 0.05
30 0.03

Table 3. Significance sets of cover song groups.  

Table 3 clearly illustrates the wide range from 0.03 to 
0.52 (σ = 0.24) of by-query-group MAP performances.  

Since there is such a large discrepancy between the best 
query group and the worst, we investigated the two 
extremes to explain attempt to explain how systems 
behave in response to different query groups.  

The best performing group (Group 1 in Table 3) is a late 
17th-century canon with a regular structure and harmonic 
progression. All versions of Group 1 share the same 
rhythmic structure as they should, since canons are 
composed of replication of the rhythms and intervals of 
the same main theme. We surmise this makes it easier for 
algorithms to accurately compare the rhythmic and tonal 
structures of the songs. There is not much variance in 
orchestration or tempo in Group 1. This was one of the 
query groups, in which SG achieved its near-perfect MAP 
scores (0.998). The SG method uses sequences of tonal 
descriptors where songs are matched using dynamic 
programming for local alignment. The EC system also 
performed very well (MAP of 0.838) for this group. It 
uses correlation of beat-synchronous chroma features. 

The worst performing group (Group 30 in Table 3) is 
an 18th century hymn set to its now-traditional 19th century 
melody. All the song versions in this cover group vary 
greatly in their harmonies, chord progressions, rhythms,
tempi and dynamic ranges. The performances encompass 
many different styles such as country, blues, jazz, hip-hop, 
rock, etc. Group 30 songs exhibit a great deal of widely 
varying melodic ornamentation and several different 
languages. Virtually all task-specific systems use tempo 
and key-independent matching of the underlying tonal or 
harmonic structure of the pieces. Because the variations of 
the Group 30 songs contain a wide range of 
embellishments and changes to the harmonic structure, we 
believe the systems are sensitive to the varying nature of 
this group. SG scored a MAP of 0.052. EC scored the 
highest MAP of 0.06 for Group 30. 

5. DISCUSSION 

In the design of audio cover song algorithms, the top 
performing algorithms share a variety of attributes. A 
majority of the four top performing algorithms use 
chromagrams or pitch class profiles as the predominant 
feature representation, with methods for addressing 
possible changes in key and tempo in matching songs.
Chromagrams represent the distribution of spectral energy 
quantized to the chromatic scale. 
    The EC algorithm addresses variations in tempo by 
performing a tempo induction stage and producing a beat-
synchronous chromagram that contains a single chroma 
vector per beat, and uses cross correlation of the 
chromagrams for song matching. The SG system uses 
dynamic programming to align and match harmonic pitch 
class profiles. JEC also uses an underlying chromagram 
representation, but filters the logarithm of each of the 12 
chroma channels into 25 logarithmically spaced bands.
This 12×25 feature matrix captures the variation of each 
of the 12 chroma channel on scales of 1.5 to 60 seconds. 
Because a logarithm is used prior to filtering, large 
changes in tempo become apparent as simple shifts along 
the filter channel axis. Song matches are performed by 
calculating the Frobenius distance between feature 
matrices.  JB also uses chromagrams, but these are used 
for performing HMM-based chord identification, with 
string alignment techniques being used to perform song 
matches on the chord transcription. 
    To address changes in key, the top performing 
algorithms perform circular shifts of their underlying 
representations to address possible transpositions. 
Therefore to calculate a possible song match, similarity 
scores are calculated multiple times for each transposition. 
    In contrast to the top performing algorithms, the worst 
performing algorithms across the two years are based 
predominantly on timbre features, which are highly 
effective for audio music similarity, genre identification, 
etc. However, for cover song identification, it is clear that 
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analysis of musical structure, and dealing with musical 
alterations to aspects such as key and tempo are necessary.  

6. CONCLUSIONS AND FUTURE WORK 

This paper presented an analysis of the evaluation of audio 
cover song identification systems. While the aim of 
identifying variations of musical pieces in audio 
collections is narrow in scope with regard to the 
overarching goals of MIR, it represents a necessary 
departure from a large portion of the MIR research done 
to date. In particular, we assert that cover song 
identification necessarily must explore “musical 
similarity” along structural dimensions, as opposed to 
those characterized merely by timbre. This is 
demonstrated by the poor performance of timbre-based 
audio similarity algorithms in identifying cover songs. 
However, we do not wish to imply that cover song 
identification is in some way superior to, or meant to serve 
as a replacement for related similarity and classification 
tasks (e.g. audio artist, audio genre, etc). Instead, it 
represents an interesting new direction of research because 
of its apparent need for analyzing underlying musical 
structure. The significant performance gains in a single 
year and the impressive performances of the top 
algorithms in 2007 suggest that some of the musical 
descriptors used by these algorithms are seemingly quite 
powerful. As discussed often in terms of the “glass 
ceiling” problem, it is our hope that such descriptors, in 
conjunction with all of the other research that has been 
carried out to date, can push the state of MIR research 
forward, and also allow musical similarity searches to be 
tailored along structural dimensions (e.g. “find me a song 
with a similar chord progression”).

In the broader context of music similarity, an interesting 
future direction would be to test the ability of “cover 
song” systems to retrieve “relevant” songs (not necessarily 
cover versions) from an audio collection given a query. 
While we have seen algorithms intended to retrieve 
similar songs in the MIREX audio music similarity task 
performed poorly in cover song identification, it would be 
interesting to see if the reverse is true. That is, it could be 
beneficial to note whether these cover song systems, 
which rely more on matching tonal or chord sequences, 
would produce results that a human judge would deem 
“similar.” This very topic is addressed by Ellis, Cotton 
and Mandel [4]. Although they found that traditional 
MFCC based approaches are superior to using only their 
beat synchronous chromagrams, the features used in cover 
song identification did perform significantly better than a 
random baseline. 
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