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ABSTRACT

We describe a series of experiments that attempt to create

a content-based similarity model suitable for making rec-

ommendations about North Indian classical music (NICM).

We introduce a dataset (nicm2008) consisting of 897 tracks

of NICM along with substantial ground-truth annotations,

including artist, predominant instrument, tonic pitch, raag,

and parent scale (thaat). Using a timbre-based similarity

model derived from short-time MFCCs we find that artist

R-precision is 32.69% and that the predominant instrument

is correctly classified 90.30% of the time. Consistent with

previous work, we find that certain tracks (“hubs”) appear

falsely similar to many other tracks. We find that this prob-

lem can be attenuated by model homogenization. We also

introduce the use of pitch-class distribution (PCD) features

to measure melodic similarity. Its effectiveness is evaluated

by raag R-precision (16.97%), thaat classification accuracy

(75.83%), and comparison to reference similarity metrics.

We propose that a hybrid timbral-melodic similarity model

may be effective for Indian classical music recommenda-

tion. Further, this work suggests that “hubs” are a general

features of such similarity modeling that may be partially

alleviated by model homogenization

1 INTRODUCTION AND MOTIVATION

North Indian classical music (NICM) has for the past forty

years become an increasingly international phenomenon. A

great number of people have had some exposure but other-

wise know little about the tradition. This presents an oppor-

tunity for a music discovery system that can suggest music

based either on known artists or on simple descriptive terms.

However, metadata for Indian classical music is often miss-

ing or inaccurate, and user-tagging of Indian classical mu-

sic tracks is uncommon. These problems suggest the use

of a content-based recommender. In addition to the goal

of exploring models that can be used for content-based rec-

ommendation, we hope to explore whether issues observed

with the standard timbre-based content-based recommenda-

tion (CBR) models, such as the prevalence of many false

hits due to a few tracks (“hubs”), are artifacts of the data or

appear more generally when novel music is considered. To

date, published work on CBR [1, 2, 12] has focused on a few

datasets that consist solely of a small slice of Western pop-

ular music. Finally we hope to show how properties of the

musical genre can be exploited to improve CBR. Because

NICM is significantly less polyphonic than most Western

music, it relatively easy for us to extract melodic informa-

tion which can be used in a similarity model.

2 BACKGROUND

NICM is one of the oldest continuous musical traditions

in the world and it is an active contemporary performance

practice. Since the 1960’s, due to the emigration of Indians

and the popularity of artists such as Ravi Shankar and Zakir

Hussain, it has become widely known to international audi-

ences. The repertoire of Indian classical music is extensive,

consisting of dozens of styles and hundreds of significant

performers. The most prevalent instruments, such as sitar,

sarod and tabla, are timbrally quite different from popular

Western instruments. NICM is an oral tradition and record-

ings therefore represent the primary materials.

The performance of Indian classical music typically in-

volves a soloist, either a vocalist or instrumentalist, accom-

panied by a tanpura (drone) throughout and a tabla (percus-

sion) in rhythmic sections. Most presentations begin with

an extended ametric melodic improvisation (alap) and build

in intensity throughout the performance. After this section,

several compositions are usually presented with tabla ac-

companiment. Here too, the majority of the music is impro-

vised. All NICM is based on raag, a melodic concept that

defines the melodic parameters of a given piece. There are

hundreds of raags, of which approximately 150 are widely

performed. Raags are typically defined by a scale and a set

of interrelated phrases. Although highly structured, they al-

low the performer tremendous scope for improvisation and

elaboration. It is this development that forms the core of

most NICM performances.

Another important, though quite distinct, performance

tradition is solo tabla, in which the tabla player becomes

the soloist. Here timbral and rhythmic patterns form the

core material, and the melodic accompaniment is used pri-

marily as a time-keeper.
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3 DATABASE

The database was assembled from the author’s personal mu-

sic collection. Recordings encompass both commercial and

non-commercial sources. Many of the non-commercial record-

ings are live concerts that are distributed informally amongst

NICM listeners. A substantial number of the most histori-

cally important recordings are of this type. The recordings

span a range from the early 20th century to present with

the vast majority of recordings being from the second half

of the century. Low fidelity is common due to the quality

of the initial recording or the number of intermediate ana-

log copies. Common degradations include hiss and crackle,

overloading, missing high and/or low frequency content, ar-

tifacts from excessive noise reduction processing, and wow

due to tape speed fluctuation. The balance of the accompa-

nying drone and tabla varies widely, in some cases barely

audible, in other cases overwhelming.

The database consist of 897 tracks. Only the first five

minutes of each track was used, leading to a total size of ap-

proximately seventy hours. This was done to reduce compu-

tation time since many of the tracks were over thirty minutes

long. A total of 141 artists are contained in the database as

well as 14 different instruments. The instruments include

sitar, sarod, tabla, shenai, flute, violin, and pakhawaj, with

the first three being the most common. There are 171 differ-

ent raags. The distribution of tracks amongst the raags was

uneven and 71 raags are represented by only one recording

in the database.

All the features used in this study, including MFCCs and

pitch-tracks, along with ground-truth annotation will be made

available at paragchordia.com/data/nicm08/.

3.1 Annotation

For each track the main artist, instrument and raag was an-

notated. In duet tracks, of which there were only fourteen,

both instruments were noted. A substantial difficulty in ana-

lyzing raag recordings is that there is no standard reference

scale, and each performer is free to choose any pitch for the

tonic. Thus, if frequency values are to be later interpreted

as scale degrees, the tonic must be known for each record-

ing. For each track an expert listener tuned an oscillator

while listening to the performance. The tracks were divided

amongst two experts, and tracks that were challenging or

ambiguous were reviewed by both. This annotation was not

done for solo tabla tracks, as they were excluded from the

melodic similarity experiments.

4 METHOD

We describe the feature extraction and statistical modeling

used to develop the timbral and melodic similarity models.

4.1 Timbre Modeling

Timbre modeling was done using MFCCs calculated on 20ms

windows overlapped by 50%. Twenty coefficients were used

excluding the 0th coefficient. As mentioned earlier, features

were only calculated on the first five minutes of each song.

A model was built for each track by assuming that each

MFCC feature vector was a sample from an underlying dis-

tribution for the current track. Because a given track is

likely to evolve over time, statistical models that are flexible

enough to represent multiple clusters in the feature space are

typically used. Following earlier approaches [1], a Gaussian

mixture model (GMM) was trained for each track based on

the frame-based MFCCs. The GMM was trained by initial-

izing the means using the k-means clustering algorithm and

then running the EM algorithm [10]. A total of thirty-two

components were used for each GMM, each with a diag-

onal covariance matrix. The model parameters, namely the

means and covariance matrices of the Gaussian components,

become our model of each track.

The similarity of two tracks was judged by comparing

the distributions that had been learned for each track [3, 12].

Although there are many intuitive ways to measure the dis-

tance of points in a feature space, it is less obvious how

to compare distributions. Several methods have been pro-

posed such as Kullback-Liebler (KL) divergence and Earth

Movers Distance (EMD) [13]. KL divergence measures the

relative entropy of two distributions: that is, the reduction in

uncertainty for one distribution if the other is known. EMD

has been widely applied to the comparison of GMMs. The

algorithm considers the minimum cost to “move” the prob-

ability mass of the first distribution so it resembles the sec-

ond. In one dimension it is easy to visualize: each GMM is

a set of hills and the hills are moved and probability mass

shifted from one to another until they are matched. Another

approach that is perhaps the most natural is to compute the

likelihood that the features vectors of one track are gener-

ated by the other tracks distribution. This last method, while

intuitive, is rarely used because of the computational cost.

Regardless of the method employed, the distance metric al-

lows us to calculate a scalar value representing the measure

of similarity between tracks. If we have n tracks then n2

distances must be calculated, or (n)(n+1)/2 if the distance

measure is symmetric, meaning that our computation time

will increase as a square of the number of tracks we wish to

analyze. The arrangement of all such distance pairs forms a

similarity matrix. For any given seed song in the database

the similarity matrix can then be used to retrieve the k near-

est neighbors, which can then be used as candidates for rec-

ommendation.

4.2 Melody Modeling

NICM, as noted in the introduction, is based on raag. In ad-

dition to specifying melodic constraints, raags are tradition-
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ally thought to elicit certain emotions in listeners. Chordia

[7] empirically demonstrated that certain raags consistently

elicit certain emotions, such as joy or sadness, even for lis-

teners with little or no prior exposure to NICM. Thus raag
identification is an important descriptor of both melodic and

emotional content of a track. Chordia [6] demonstrated that

pitch-class distributions (PCDs) could be used to recognize

raags using a variety of classification algorithms. Further,

PCDs might reveal connections or perceptual similarities

between particular recordings beyond those suggested by

raag name alone.

These insights are used in the current system to build a

melodic similarity model. First, each piece was pitch tracked

using the YIN [9] algorithm. Each pitch estimate was then

converted to a scale degree using the manually annotated

tonic. Given the tonic, the locations of the scale degrees

were computed using the ratios that define the chromatic

notes of a just intoned scale. The pitch estimate at each

frame was compared to the ideal scale values in the log do-

main and assigned to the nearest scale degree. The octave

information was then discarded, giving a sequence of pitch-

classes. A histogram was then computed yielding a pitch-

class distribution for the track. Because of the consistent

presence of the drone, the tonic value usually overwhelms

all other scale degrees without providing any useful discrim-

inative power and was therefore discarded. Thus each track

in the database was characterized by one eleven dimensional

feature vector.

In addition to a pitch estimate, the YIN algorithm returns

a pitch aperiodicity measure which was used to weight the

pitch estimates. In one case, which we call linear pitch

salience weighting, pitch aperiodicity was converted to a

pitch salience measure as 1 − pitchAperiodicty. In a sec-

ond case, called ratio weighting, the pitch salience was de-

fined as 1/pitchAperiodicity. Previous work [8] showed

improved performance on the raag classification task after

weighting, particularly for ratio weighting. In practice, such

weighting tends to eliminate or de-emphasize regions of the

track where the soloist is silent and the pitch track is there-

fore noisy and uninformative.

A melodic similarity matrix was constructed by evalu-

ating the distance between pairs of PCDs for each of the

conditions. Two distance metrics were used, Pearson corre-

lation and Euclidean distance, with each of these yielding a

distinct similarity matrix. The similarity models were then

used to retrieve the k nearest neighbors for each track.

5 EVALUATION

In the end, we are interested in how well such a similar-

ity engine might perform for such tasks as making purchase

recommendations, or suggesting songs in playlist. As such,

the final evaluation requires building an application and judg-

ing its success in terms of user engagement or purchases.

Accuracy Rates
model type

k = 1 k = 5 k = 10

GMM 81.27% 71.28% 65.64%

GMM - homogenized 90.30% 80.57% 73.36%

non-parametric 87.96% 75.96% 67.97%

Table 1. Instrument classification accuracy using three dif-

ferent modeling techniques with a k-NN classifier. GMMs

without homogenization using Earth Mover’s Distance, ho-

mogenized with log determinant threshold of -150, and non-

parametric modeling are shown.

However, before building such a system we would like to

have some sense of whether our similarity judgments are

appropriate. Various proxy tasks are used that hopefully

correlate with the ultimate utility of the system. For exam-

ple, Berenzweig [2] and Aucouturier [1] have used artist R-

precision and classification tasks to judge the quality of the

recommendations based on their timbre models.

Although it is true that an artist’s sound may change from

recording to recording, it is nevertheless likely that many

artists will be timbrally consistent and thus distinguishable

from each other . Therefore if our timbre model tends to

return hits of the same artist we would tend to think it is

doing better than if it does not. In addition to tasks based

on artist name, we also evaluated R-precision and classifica-

tion accuracy for the predominant instrument. Similarly, for

melodic evaluation, we considered raag R-precision, thaat
classification, and correlation with a ground-truth matrix ex-

pressing known relationships between raags.

5.1 Timbral Evaluation

Following the standard definition, we define R-precision to

be the number of relevant hits for a given seed divided by

the total possible relevant hits in the database. For example,

in the instrument task, we consider the relevant hits to be the

number of the R nearest neighbors that have the same instru-

ment label as the seed, where R represents the total number

of tracks with the same instrument as the seed. For the artist

task, average R-precision was 26.96% using a GMM model

and EMD compared with 2.08% for neighbors chosen ran-

domly. A related task is classification, in which the k near-

est neighbors are used to classify the seed track. Table 1

gives the classification performance for recognition of the

predominant instrument. Nearest neighbor (k = 1) classifi-

cation performs best with an accuracy of 81.27% for four-

teen instrument targets. In the rare case (14 tracks) where

there are two main instruments, we consider classification

successful if either of the main instruments is matched.
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Figure 1. Log of the determinant for the components of

GMMs. It can be seen that certain tracks have outlier com-

ponents where the log-determinant is very small.

5.2 Hubness

It has been previously observed that a substantial problem

with the standard timbre modeling strategies for CBR is the

existence of hubs, certain tracks which inappropriately ap-

pear as hits for many different seeds [1]. More precisely,

we define a hub to be a track that is a top one hundred hit

for at least 200 of the seeds in the database (twice the aver-

age). In our dataset a total of 105 tracks, or 11.71% of the

database, fit this definition. Recent work by Godfrey [11]

has shown that these hubs may arise because certain tracks,

termed “anti-hubs”, are effectively taken out of the pool of

possible neighbors due to poor modeling by the GMM. 121

tracks in our dataset (13.49%) were anti-hubs, which we de-

fined as those that match less than twenty seeds. Figure 1

shows the log-determinant of the covariance matrix for each

GMM component of each track. The determinant of the co-

variance matrix can be thought of as a measure of the vol-

ume of the Gaussian data cloud. We see that certain compo-

nents have nearly zero volume. By looking at an activation

matrix, which indicates when a GMM component is active

in a track, Godfrey found that such components are often

active only for very short segments of the track and are oth-

erwise unused.

A possible solution to this problem is the removal of de-

generate components of the GMM. This homogenized model

may then have a more evenly distributed hub histogram. To

see the effect of this, we reduced each GMM by removing

components where the log of the determinant was less than a

specified threshold. This was done for three levels as shown

in Table 2. The similarity matrix was then recomputed using

Threshold R-Precision

-300 0.3040

-200 0.3215

-150 0.3269

Table 2. Artist R-Precision results obtained using homoge-

nization

these new models. We find that artist R-precision increases

by 5.73 percentage points to 32.69% for the maximum level

of homogenization, and instrument classification accuracy

increases by 9.03 percentage points to 90.30%. This is con-

sistent with results on the uspop2002 dataset, and suggests

that the problems of hubs is general and may be ameliorated

by model homogenization [11].

An alternative approach to the hub problem is to use al-

ternative modeling strategies. One such approach is to model

feature vectors non-parametrically rather than using a GMM.

In kernel density estimation, the points in the feature space

representing observations (e.g. MFCC feature vectors) are

essentially convolved with a window such as a Gaussian,

and summed to yield the density estimate [10]. The esti-

mated densities are then compared using a metric such as

the Bhattacharya distance [5], defined as

B(p, q) = −log
∑
x∈X

√
p(x)q(x). (1)

Using such an approach, we found that instrument R-

precision increased by 3.14 percentage points to 30.10% and

instrument classification accuracy improved 6.69 percent-

age points to 87.96% compared with the non-homogenized

GMM model. Again, this is consistent with experiments

performed on the uspop2002 dataset [11], suggesting that

this modeling approach may be broadly applicable. A fur-

ther advantage of this non-parametric approach is that com-

putation time is greatly reduced, primarily because the iter-

ative EM algorithm step can be skipped. The bandwidth of

the kernel was varied but was not found to have a significant

effect over a range of reasonable values.

5.3 Melody Evaluation

Raag, as noted above, is the most essential melodic descrip-

tion of NICM. Our first evaluation task was therefore raag
R-precision. Accuracy was 16.97% compared to a random

baseline of 1.18%. We excluded tabla and pakhawaj solos

as well as a few semi-classical tracks that did not have a

clearly defined raag. The sparseness of the data, with re-

spect to certain raags, led us to additionally classify each

track according to parent scale, or thaat. The system of

abstract parent scale-types, developed by Bhatkande in the

early 20th century [4], consists of a mapping of the wide

variety of scale-types used in raags to a small set of seven
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note scales that were considered to represent basic melodic

spaces. This step reduced the number of melodic categories

to ten. Classification accuracy for thaats was 75.83% us-

ing the nearest neighbor. Surprisingly, neither of the pitch-

salience weighted vectors performed better than the unweighted

PCDs.

Although R-precision and classification tasks are infor-

mative, we would like to be able to compare the similar-

ity matrix to some ideal ground-truth similarity matrix. Al-

though no such data exist based on perceptual experiments,

reasonable references may nevertheless be built.

A ground-truth similarity matrix was built by converting

each raag to a binary PCD vector that indicated whether

each of the twelve scale degrees was used in that raag. Dis-

tances between raags were then computed using the Ham-

ming distance, which counts the number of mismatches be-

tween the vectors. It should be noted that a match is found

when both raags use a certain scale degree and also when

both omit a certain scale degree. We also experimented with

the inner product, which counts the number of scale degrees

that are shared between the raags. However, we found that

the Hamming distance matched intuitive notions of distance

better since the absence of scale degree in a raag is as im-

portant as its presence.

One approach to comparing similarity matrices is to gen-

erate lists of hits for each seed using both the empirical simi-

larity matrix and the ground-truth similarity matrix. The av-

erage distance of the hits from the seed would be computed

for all seeds in the empirical similarity matrix, for exam-

ple based on the Euclidean distance between each retrieved

track and the seed. Likewise the distances of the neigh-

bors fetched according to the ground-truth matrix could be

calculated. The averages over each model might then be

compared. The problem with such an approach is that the

distances cannot be directly be compared, since they use

two different distance metrics. For example, in our case the

ground-truth distances are based on Hamming distances be-

tween binary PCDs while the empirical distances are based

on correlation between the continuous-valued PCDs. One

approach that has been proposed to solve this problem is to

use the rank order rather than the distance. Taking inspira-

tion from measures used in text retrieval, Berenzweig et al.

[3] define what they call the Top-N Ranking agreement:

si =
N∑

r=1

(αr)r(αc)kr

, (2)

where kr is the ranking according to the empirical sim-

ilarity matrix of the rth-ranked hit using the ground-truth

matrix. The score is computed for each seed and averaged

to give the overall agreement. The αc and αr parameters

determine the sensitivity of the score to ordering in each of

the lists generated by the two metrics.

In order to compare the distances directly we used Ham-

ming distance on the empirical results. This was done by

Average Distances
similarity matrix

k = 1 k = 5 k = 10

ground-truth 0.0331 0.1444 0.2770

empirical 1.831 2.3669 2.6235

random 4.682 4.668 4.6442

Table 3. Average distances from seeds calculated with bi-

nary PCDs for ground-truth, empirical, and random similar-

ity matrices.

converting each track into a binary PCD vector based on its

raag label so that the Hamming distance could be applied.

This made it easy to compare empirical performance to an

upper bound, whereas the Top-N Ranking agreement can be

difficult to interpret.

Results are substantially better than random. The rank

list score was .1085 compared with .0087 for the random,

with N = 10, αc = .51/3, and αr = .52/3. Using our

method for direct distance comparison, the average distance

for k = 5 was .1444 for the ground truth matrix and 4.668

for the random case. The value for the empirical similarity

matrix fell in the middle of this range (2.367). These results

are summarized in table 3.

We also found that hubness occurred with PCD vectors,

although to a lesser extent than with timbral modeling. Hub

and anti-hub percentages using the unweighted PCD fea-

ture and Hamming distance were 8.9% and 4.7% respec-

tively, using the same definition as above. Not surprisingly

this was less than for the timbre models, most likely due

to the lower dimensionality of the feature space (eleven vs.

twenty). Berenzweig demonstrated that hubness increases

with the dimensionality of the feature space [2].

6 DISCUSSION

Although the artist R-precision is relatively low (32.69%),

this is expected because in NICM instrumentation is quite

similar for many artists. Without further annotation indicat-

ing higher-level artist clusters, we would expect relatively

low precision values. That instrument classification accu-

racy was over 90% suggests that the timbre model is cap-

turing essential information. The instrument classification

result is particularly encouraging since it is likely that con-

necting tracks with the same main instrument would be im-

portant for a recommendation system. Similarly, although

raag R-precision was low, thaat identification was correct in

more than three out of four cases. Comparisons to random

and best-case scenarios suggest that despite the difficulties

of pitch tracking real recordings, PCDs are sufficiently ro-

bust to provide useful melodic information.
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The results presented suggest that MFCC based timbre

modeling is effective for NICM and generalizes beyond West-

ern popular music. Further we find support for the idea

that hubs may be a general problem when models are con-

structed using GMMs on frame-based MFCC features. This

work also supports the observation that model homogeniza-

tion may lead to improved retrieval precision and classifica-

tion accuracy.

7 APPLICATION

We anticipate that the similarity modeling presented here

could be used as the basis for a music recommendation sys-

tem based on both timbral and melodic characteristics. One

way of combining them would be to create a global distance

metric. In the simplest case, one could weight timbre and

melody equally and simply sum the distances in the respec-

tive similarity matrices. More likely we might imagine giv-

ing users control over the extent to which recommendations

were controlled by one parameter or the other. This could

be done explicitly, for example through a slider interface,

or implicitly in a live application by tracking the perceived

quality of the recommendations, for example by allowing

users to rate the suggested tracks. We conjecture that this

combined model approach may also allow adaptation to dif-

ferent patterns of user preferences; timbre might dominate

the quality judgments of some users, while others might be

more responsive to melodic content.

8 FUTURE WORK

Although encouraging, the current models are clearly quite

simplistic and the results suggest there is ample room for

improvement. On the timbral side, although including more

features may improve performance incrementally, as is often

noted, significant improvement will require a more percep-

tually grounded model. For melodic modeling we intend to

generalize PCDs to include sequential structure though n-

gram modeling. Earlier work has shown that this markedly

improves raag classification performance [6]. Pitch tracking

could also be improved by suppression of accompaniment.

We hope to use the techniques discussed here to create

a CBR system for Indian classical music in which listeners

will be able to generate playlists based either on artists or

tracks, or alternatively based on simple emotional descrip-

tors. This would allow us to replace evaluation based on

measures such as R-precision and artificial ground-truth ma-

trices with more objective measures of the success of these

models in generating music streams.
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