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ABSTRACT

The majority of existing research in Music Information Re-

trieval (MIR) has focused on either popular or classical mu-

sic and frequently makes assumptions that do not generalize

to other music cultures. We use the term Computational Eth-

nomusicology (CE) to describe the use of computer tools to

assist the analysis and understanding of musics from around

the world. Although existing MIR techniques can serve as

a good starting point for CE, the design of effective tools

can benefit from incorporating domain-specific knowledge

about the musical style and culture of interest. In this pa-

per we describe our realization of this approach in the con-

text of studying Afro-Cuban rhythm. More specifically we

show how computer analysis can help us characterize and

appreciate the complexities of tracking tempo and analyz-

ing micro-timing in these particular music styles. A novel

template-based method for tempo tracking in rhythmically

complex Afro-Cuban music is proposed. Although our ap-

proach is domain-specific, we believe that the concepts and

ideas used could also be used for studying other music cul-

tures after some adaptation.

1 INTRODUCTION

We present a set of techniques and tools designed for study-

ing rhythm and timing in recordings of Afro-Cuban music

with particular emphasis on “clave,” a rhythmic pattern used

for temporal organization. In order to visualize timing in-

formation we propose a novel graphical representation that

can be generated by computer from signal analysis of audio

recordings and from listeners’ annotations collected in real

time. The proposed visualization is based on the idea of Bar

Wrapping, which is the breaking and stacking of a linear

time axis at a fixed metric location.

The techniques proposed in this paper have their origins

in Music Information Retrieval (MIR) but have been adapted

and extended in order to analyze the particular music cul-

ture studied. Unlike much of existing work in MIR in which

the target user is an “average” music listener, the focus of

this work is people who are “experts” in a particular music

culture. Examples of the type of questions they would like

to explore include: how do expert players differ from each

other, and also from competent musicians who are not fa-

miliar with the particular style; are there consistent timing

deviations for notes at different metric positions; how does

tempo change over the course of a recording etc. Such ques-

tions have been frequently out of reach because it is tedious

or impossible to explore without computer assistance.

Creating automatic tools for analyzing micro-timing and

tempo variations for Afro-Cuban music has been challeng-

ing. Existing beat-tracking tools either don’t provide the re-

quired functionality (for example only perform tempo track-

ing but don’t provide beat locations) or are simply not able

to handle the rhythmic complexity of Afro-Cuban music

because they make assumptions that are not always appli-

cable, such as expecting more and louder notes on met-

rically “strong” beats. Finally the required precision for

temporal analysis is much higher than typical MIR appli-

cations. These considerations have motivated the design of

a beat tracker that utilizes domain-specific knowledge about

Cuban rhythms.

The proposed techniques fall under the general rubric

of what has been termed Computational Ethnomusicology
(CE), which refers to the design and usage of computer tools

that can assist ethnomusicological research [14] . Futrelle

and Downie argued for MIR research to expand to other

domains beyond Western pop and classical music [9]. Re-

trieval based on rhythmic information has been explored in

the context of Greek and African traditional music [1].

Our focus here is the analysis of music in which percus-

sion plays an important role, specifically, Afro-Cuban mu-

sic. Schloss [13] and Bilmes [4] each studied timing nu-

ances in Afro-Cuban music with computers. Beat tracking

and tempo induction are active topics of research, although

they have mostly focused on popular music styles [11]. Our

work follows Collins’ suggestion [5] to build beat trackers

that embody knowledge of specific musical styles.

The clave is a small collection of rhythms embedded in

virtually all Cuban music. Clave is a repeated syncopated

rhythmic pattern that is often explicitly played, but often

only implied; it is the essence of periodicity in Cuban music.

An instrument also named “clave” (a pair of short sticks hit

together) usually plays this repeating pattern. Clave is found

mainly in two forms: rumba clave and son clave. (One way

of notating clave is shown in Figure 1.)
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Figure 1. Son (left) and rumba (right) clave

Our study of timing requires knowing the exact time of

every note played by the clave. We can then decompose this

data into an estimate of how tempo changes over time (what

is called the tempo curve) and a measure of each individual

note’s deviation from the “ideal” time predicted by a metro-

nomic rendition of the patterns shown in Figure 1.

Unfortunately, we do not know of any databases of Afro-

Cuban music with an exact ground-truth time marked for

every clave note or even for every downbeat. 1 Therefore

we constructed a small four-song database 2 and gathered

ground truth clave timing data by having an expert percus-

sionist with Afro-Cuban experience tap along with the clave

part. Custom sample-accurate tap detection/logging soft-

ware automatically timestamps the taps.

Recordings of Afro-Cuban music challenge existing state-

of-the-art beat-tracking algorithms because of the complex

and dense rhythm and the lack of regular approximately

isochronous pulses. Figure 2 shows how two recent state-

of-the-art beat-tracking systems (BeatRoot [7] and a beat

tracker using dynamic programming proposed by Ellis [8])

do not generate an accurate tempo curve for the recording

CB. The plots in the figure are shown only in order to moti-

vate the proposed approach. The comparison is not fair, as

the other algorithms are more generally applicable and de-

signed with different assumptions, but in any case it demon-

strates the advantage of a domain-specific method to deal

with these recordings: our method is specifically designed

to take into account clave as the rhythmic backbone.

2 DATA PREPARATION

It is common for Afro-Cuban songs to begin with just the

sound of the clave for one or two repetitions to establish the

initial tempo. However as other instruments (both percus-

sive and pitched) and voices enter the mix the sound of the

clave tends to become masked. The first step of data prepa-

ration is to enhance the sound of the clave throughout the

song using a matched filter approach. In addition onset de-

tection is performed.

1 Bilmes recorded about 23 minutes of Afro-Cuban percussion at MIT in

1992, and performed sophisticated analysis of the timing of the guagua and

conga (but not clave) instruments [4]; unfortunately these analog record-

ings are not currently available to the research community.
2 Here is the name, artist, and source recording for each song, along

with the two-character ID used later in the paper: LP: La Polemica, Los

Muñequitos de Matanzas, Rumba Caliente 88. CB: Cantar Bueno, Yoruba

Andabo, El Callejon De Los Rumberos. CH: Chacho, Los Muñequitos de

Matanzas, Cuba: I Am Time (Vol. 1). PD: Popurrit de Sones Orientales,

Conjunto de Sones Orientales, Son de Cuba.

Figure 2. Four estimates of the tempo curve for our record-

ing CB: Ground truth calculated from a human expert’s tap

times (upper left), curve from our method (top right), curve

from BeatRoot (lower left), and curve from Ellis’ dynamic

programming approach (lower right).

2.1 Clave enhancement using Matched-Filtering

A matched filter detects or enhances the presence of an a
priori known signal within an unknown signal. Its impulse

response is a time-reversed copy of the known signal, which

in our case is the beginning portion of one isolated clave

note. The clave instrument affords little timbral variety and

therefore every note of clave in a given recording sounds

substantially like all the others, so a matched filter made

from any single note (frequently easily obtained from the

beginning of the song) will enhance the presence of the clave

throughout the song and suppress the remaining signal. One

free parameter is the filter order, i.e., the duration of the seg-

ment of the clave note; in each case we selected a “good”

matched filter experimentally by listening to the output of

different configurations. All the curves in Figure 2 and

results in this paper have been calculated on audio signals

output by matched filtering.

2.2 Onset detection

Onset detection aims at finding the starting time of musical

events (e.g. notes, chords, drum events) in an audio signal;

see [3],[6] for recent tutorials. We used spectral flux as the

onset detection function, defined as:

SF (n) =
N/2∑
k=0

HWR(|X(n, k)| − |X(n− 1, k)|) (1)
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where HWR(x) = x+|x|
2 is the half-wave rectifier function,

X(n, k) represents the k-th frequency bin of the n-th frame

of the power magnitude (in dB) of the short time Fourier

transform, and N is the corresponding Hamming window

size. For the experiments performed in this work all data

had a sampling rate fs = 44100 Hz and we used a window

size of 46 ms (N = 2048) and a hop size of about 11ms

(R = 512). The onsets are subsequently detected from the

spectral flux values by a causal peak-picking algorithm that

finds local maxima as follows. A peak at time t = nR
fs

(the

time of the beginning of the nth frame) is selected as an

onset if it fulfills the following conditions:

1. SF (n) ≥ SF (k) ∀k : n− w ≤ k ≤ n + w

2. SF (n) >
Pn+w

k=n−mw SF (k)

mw+w+1 × thres + δ

where w = 6 is the size of the window used to find a local

maximum, m = 4 is a multiplier so that the mean is calcu-

lated over a larger range before the peak, thres = 2.0 is a

threshold relative to the local mean that a peak must reach in

order to be sufficiently prominent to be selected as an onset,

and δ = 10−20 is a residual value to avoid false detections

on silent regions of the signal. All these parameter values

were derived from preliminary experiments using a collec-

tion of music signals with varying onset characteristics.

In order to reduce the false detection rate, we smooth the

detection function SF (n) with a Butterworth filter to reduce

the effect of spurious peaks:

H(z) =
0.1173 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946z−2
(2)

(These coefficients were found by experimentation based on

the findings in [3],[6].) In order to avoid phase distortion

(which would shift the detected onset time away from the

SF (n) peak) the signal is filtered in both the forward and

reverse directions.

3 TEMPLATE-BASED TEMPO TRACKING

We propose a new method to deal with the challenges of

beat tracking in Afro-Cuban music. The main idea is to use

domain specific knowledge, in this case the clave pattern,

directly to guide the tracking. The method consists of the

following four basic steps: 1) Consider each detected onset

time as a potential note of the clave pattern. 2) Exhaustively

consider every possible tempo (and clave rotation) at each

onset by cross-correlating each of a set of clave-pattern tem-

plates against an onset strength envelope signal beginning

at each detected onset. 3) Interpret each cross-correlation

result as a score for the corresponding tempo (and clave ro-

tation) hypothesis. 4) Connect the local tempo and phase

estimates to provide a smooth tempo curve and deal with

errors in onset detection, using dynamic programming.

The idea of using dynamic programming for beat track-

ing was proposed by Laroche [10], where an onset func-

tion was compared to a predefined envelope spanning mul-

tiple beats that incorporated expectations concerning how

a particular tempo is realized in terms of strong and weak

beats; dynamic programming efficiently enforced continu-

ity in both beat spacing and tempo. Peeters [12] developed

this idea, again allowing for tempo variation and matching

of envelope patterns against templates. An approach assum-

ing constant tempo that allows a simpler formulation at the

cost of more limited scope has been described by Ellis [8].

3.1 Clave pattern templates

At the core of our method is the idea of using entire rhyth-

mic patterns (templates) for beat tracking rather than indi-

vidual beats. First we construct a template for each possible

tempo. We take the ideal note onset times in units of beats

(e.g., for rumba clave, the list 0, 0.75, 1.75, 2.5, 3) and mul-

tiply them by the duration of a beat at each tempo, giving

ideal note onset times in seconds. We center a Gaussian en-

velope on each ideal note onset time to form the template.

The standard deviation (i.e., width) of these Gaussians is a

free parameter of this method. Initial results with a constant

width revealed a bias towards higher tempi, so widths are

specified in units of beats, i.e., we scale the width linearly

with tempo. Better results were obtained by making each

template contain multiple repetitions of the clave, e.g., three

complete patterns. Figure 3 shows a visual representation

of the template rotations for all considered tempi.

Figure 3. Clave Templates for all rotations and tempi

With a 5-note clave pattern, any given note played by the

clave could be the 1st, 2nd, 3rd 4th or 5th note of the pattern.

Therefore we make templates for all “rotations” of the clave,

i.e., for the repeating pattern as started from any of the five

notes. For example, rotation 0 of rumba clave is [0, 0.75,

1.75, 2.5, 3], and rotation 1 (starting from the second note)

is [0.75 1.75 2.5 3 4] - 0.75 = [0 1 1.75 2.25 3.25]. Time 0
always refers to the onset time of the current note.
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Figure 4. Matching different templates (filled grey) to the

CB recording’s energy envelope (black line). The X-axis is

time (seconds), with zero the time of the onset under consid-

eration. The score for each template match represents how

well that template lines up with the energy envelope.

We cross-correlate (in other words, take the dot product

of) these templates against segments of an onset strength

envelope (in our case, simply the total energy in each 1024-

sample window of the matched filter output) beginning at

the time of each detected onset. We interpret the dot prod-

uct between the onset strength signal O(t) and a template

Tj,k(t) with tempo j and rotation k as the strength of the

hypothesis that the given onset is the given note of clave at

the given tempo. Figure 4 depicts this process for some

tempi and rotations and the corresponding scores. We ex-

haustively compute these dot products for every candidate

tempo j (e.g,. from 95 to 170 BPM in 1 BPM increments),

for all five rotations of the clave pattern k , for every detected

onset i at time ti to produce a score grid:

score(i, j, k) =
LTj,k−1∑

t=0

Tj,k(t)O(ti + t) (3)

where LTj,k is the length of template Tj,k .

3.2 Rotation-blind dynamic programming

It is trivial to look at a given onset, pick the tempo and ro-

tation with the highest score, and call that the short-term

tempo estimate. However, due to the presence of noise, in-

evitable onset detection errors, and the matched filter’s far-

from-perfect powers of auditory source separation, simply

connecting these short-term tempo estimates does not pro-

duce a usable estimate of the tempo curve. Better results can

be achieved by explicitly discouraging large tempo changes.

We use dynamic programming [2] as an efficient means to

estimate the best tempo path (i.e., time-varying tempo). In

the next section we will consider the rotations of the tem-

plate; for now let the “rotation-blind” score be:

scoreRB(i, j) = max(score(i, j, k)) k : 1..5 (4)

We convert each score scoreRB to a cost Ci,j with a

linear remapping so that the highest score maps to cost 0
and the lowest score maps to cost 1. We define a path P
as a sequence of tempo estimates (one per onset), so that

P (i) is P’s estimate of the tempo at time ti. Our algorithm

minimizes the path cost PC of the length n path P :

PC(P ) =
∑

i=0:n−1

Ci,P (i)+
∑

i=0:n−2

F (P (i), P (i+1)) (5)

where F (tempo1, tempo2) is a “tempo discontinuity cost

function” expressing the undesirability of sudden changes

in tempo. F is simply a scalar times the absolute difference

of the two tempi. Dynamic programming can efficiently find

the lowest-cost path from the first onset to the last because

the optimal path up to any tempo at time ti depends only

on the optimal paths up to time ti−1. We record both the

cost PC(i, j) and the previous tempo Previous(i, j) for

the best path up to any given onset i and tempo j.

3.3 Rotation-aware dynamic programming

Now we will extend the above algorithm to consider rota-

tion, i.e., our belief about which note of clave corresponds

to each onset. Now our cost function Ci,j,k is also a func-

tion of the rotation k. Our path tells us both the tempo

Ptempo(i) at time ti and also the rotation Prot(i), so we

must keep track of both previous Previoustempo(i, j) and

Previousrot(i, j) (corresponding to the best path up to i
and j). Furthermore, considering rotation will also give us a

principled way for the path to skip over “bad” onsets, so in-

stead of assuming that every path reaches onset i by way of

onset i− 1 we must also keep track of Previousonset(i, j).
The key improvement in this algorithm is the handling of

rotation. Rotation (which indexes the notes in the clave pat-

tern) is converted to phase, the proportion (from 0 to 1) of

the distance from one downbeat to the next. (So the phases

for the notes of rumba clave are [0, 0.1875, 0.4375, 0.625,

0.75]). The key idea is predicting what the phase of the next

note “should be”: Given phase φ1 and tempo j1 for onset

i1, a candidate tempo j2 for onset i2, and the time between

onsets ΔT = t2 − t1, and assuming linear interpolation of
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LP CB CH PD LPWT PDWT

RB 40 26 22.9 63.1 39.96 62.7

RA 1.75 11 1.54 3.10 2.043 57.9

Table 1. RMS (in BPM) results for tempo curve estimation

tempo during the (short) time between these nearby onsets,

we can use the fact that tempo (beat frequency) is the deriva-

tive of phase to estimate the phase φ̂2:

φ̂2 = φ1 + ΔT ((j1 + j2)/2)/(4× 60) (6)

Dividing by 4× 60 converts from BPM to bars per second.

Now we can add an extra term to our cost function to ex-

press the difference between the predicted phase φ̂2 and the

actual phase φ2 corresponding to the rotation of whatever

template we’re considering for the onset at time t2 (being

careful to take this difference modulo 1, so that, e.g., the dif-

ference between 0.01 and .98 is only 0.03, not 0.97). We’ll

call this phase distance the “phase residual” R, and add the

term α ∗R to our cost function.

Now let’s consider how to handle “false” detected onsets,

i.e., onsets that are not actually notes of clave. For onset n,

we consider not just onset n − 1 as the previous onset, but

every onset i with ti > tn −K, i.e., every onset within K
seconds before onset n, where K is set heuristically to 1.5

times the largest time between notes of clave (one beat) at

the slowest tempo. We introduce a “skipped onset cost” β
and include β × (n − i − 2) in the path cost when the path

goes from onset i to onset n.

Table 1 shows the Root-mean-square (RMS) error be-

tween the ground truth tempocurve and the tempocurves es-

timated by the rotation-blind (RB) and rotation-aware (RA)

configurations of our method. In all cases the rotation-aware

significantly outperforms the rotation-blind method (which

usually tracks correctly only parts of the tempo curve). The

first three recordings (LP, CB, CH) have rumba-clave and

the fourth piece (PD) has son-clave. The last two columns

show the results when using the “wrong” template. Essen-

tially when the template is not correct the matching cost of

the beat path is much higher and the tempo curve estimation

is wrong. Figure 5 shows the score grid for the rotation-

blind (top) and rotation-aware (bottom) configurations over-

laid with the estimated and ground truth tempocurves.

4 BAR-WRAPPING VISUALIZATION

A performance typically consists of about 625-1000 clave

“notes”. Simply plotting each point along a linear time axis

would require either excessive width, or would make the fig-

ure too small to see anything; this motivates bar wrapping.

Conceptually, we start by marking each event time (in this

Figure 5. Rotation-blind (top) and rotation-aware (bottom)

beat tracking

case, each detected onset) on a linear time axis. If we imag-

ine this time axis as a strip of magnetic tape holding our

recording, then metaphorically we cut the tape just before

each downbeat, so that we have 200 short pieces of tape,

which we then stack vertically, so that time reads from left

to right along each row, and then down to the next row, like

text in languages such as English. Each of these “strips” is

then stretched horizontally to fill the figure width, adding a

tempo curve along the right side to show the original dura-

tion of each bar. Figure 6 depicts the times of our detected

onsets for LP with this technique. The straight lines show

the theoretical clave locations. By looking at the figure one

can notice that the 5th clave note is consistently slightly later

than the theoretical location. This would be hard to notice

without precise estimation of the tempocurve.

Rotation-aware dynamic programming is used to find the

downbeat times. An explicit downbeat estimate occurs when-

ever the best path includes a template at rotation 0. But there

might not be a detected onset at the time of a downbeat, so

we must also consider implicit downbeats, where the current

onset’s rotation is not 0 but it is lower than the rotation of

the previous onset in the best path. The phase is interpolated

to estimate the downbeat time that “must have occurred” be-

tween the two onsets.
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Figure 6. Bar-wrapping visualization

5 DISCUSSION AND CONCLUSIONS

Our beat-tracking method works particularly well for Afro-

Cuban clave for many reasons: 1) The clave part almost

never stops in traditional Afro-Cuban music (although it can

be hard to hear when many other percussion instruments

are playing). 3 2) The clave pattern almost never changes

in Afro-Cuban music. 4 3) The clave instrument produces

an extremely consistent timbre with every note, so matched

filtering does a good job emphasizing it. 5 4) Songs often

begin with the clave alone, making it easy to construct our

matched filter. 6 5) The clave plays one of a few prede-

termined syncopated parts, favoring the use of predefined

templates rather than assumptions of isochrony.

There are many future work directions. Rhythmic analy-

sis can be used to categorize recordings into different styles

and possibly identify particular artists or even percussion-

ists. We also plan to apply the method to more record-

ings and continue working with ethnomusicologists and per-

formers interested in exploring timing. It is our belief that

our template-based rotation-aware formulation can also be

applied to popular music by utilizing different standard drum

patterns as templates. All the code implementing the method

can be obtained by emailing the authors.

3 Our method’s phase- and tempo-continuity constraints allow it to stay

on track in the face of extra or missing onsets and occasional unduly low

template match scores, so we expect that it would still perform correctly

across short gaps in the clave part.
4 One subtlety of Afro-Cuban music is the notion of “3-2” versus “2-3”

clave, which refers to a 180-degree phase shift of the clave part with respect

to the ensemble’s downbeat. Our method has no notion of the ensemble’s

downbeat and “doesn’t care” about this distinction. Some songs change

between 3-2 and 2-3 in the middle, but never by introducing a discontinuity

in the clave part (which would be a problem for our algorithm); instead the

other instruments generally play a phrase with two “extra” beats that shifts

their relationship to the clave.
5 In rare cases a different instrument carries the clave part; this should

not be a problem for our method as long as a relatively isolated sample can

be located.
6 As future work we would like to explore the possibility of creating a

“generic” clave enhancement filter that doesn’t rely on having an isolated

clave note in every recording, a weakness of the current method.
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